Exact Simulation for a Class of Tempered Stable and Related Distributions

In this article, we develop a new scheme of exact simulation for a class of tempered stable (TS) and other related distributions with similar Laplace transforms. We discover some interesting integral representations for the underlying density functions that imply a unique simulation framework based on a backward recursive procedure. Therefore, the foundation of this simulation design is very different from existing schemes in the literature. It works pretty efficiently for some subclasses of TS distributions, where even the conventional acceptance-rejection mechanism can be avoided. It can also generate some other distributions beyond the TS family. For applications, this scheme could be easily adopted to generate a variety of TS-constructed random variables and TS-driven stochastic processes for modelling observational series in practice. Numerical experiments and tests are performed to demonstrate the accuracy and effectiveness of our scheme.

[1]  N. Shephard,et al.  Normal Modified Stable Processes , 2001 .

[2]  Luc Devroye,et al.  Random variate generation for exponentially and polynomially tilted stable distributions , 2009, TOMC.

[3]  John W. Tukey,et al.  Some Distributions of Sample Means , 1946 .

[4]  S. Janson Stable distributions , 2011, 1112.0220.

[5]  B. Mandelbrot THE PARETO-LEVY LAW AND THE DISTRIBUTION OF INCOME* , 1960 .

[6]  P. Hougaard Survival models for heterogeneous populations derived from stable distributions , 1986 .

[7]  S. S. Mitra Stable Laws of Index $2^{-n}$ , 1982 .

[8]  L. Bondesson On simulation from infinitely divisible distributions , 1982, Advances in Applied Probability.

[9]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[10]  Kyoung-Kuk Kim,et al.  Simulation of Tempered Stable Lévy Bridges and Its Applications , 2016, Oper. Res..

[11]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.

[12]  J. Leslie The Inverse Gaussian Distribution: Theory, Methodology, and Applications , 1990 .

[13]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[14]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[15]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[16]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[17]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[18]  B. Mandelbrot New Methods in Statistical Economics , 1963, Journal of Political Economy.

[19]  Marius Hofert,et al.  Efficiently sampling nested Archimedean copulas , 2011, Comput. Stat. Data Anal..

[20]  P. Levy,et al.  Calcul des Probabilites , 1926, The Mathematical Gazette.

[21]  J. Huston McCulloch,et al.  13 Financial applications of stable distributions , 1996 .

[22]  Ward Whitt,et al.  A Unified Framework for Numerically Inverting Laplace Transforms , 2006, INFORMS J. Comput..

[23]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[24]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[25]  B. Mandelbrot STABLE PARETIAN RANDOM FUNCTIONS AND THE MULTIPLICATIVE VARIATION OF INCOME , 1961 .

[26]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[27]  D. Stephens,et al.  Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection , 2007 .

[28]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[29]  N. Shephard,et al.  Some recent developments in stochastic volatility modelling , 2002 .

[30]  M. Kanter,et al.  STABLE DENSITIES UNDER CHANGE OF SCALE AND TOTAL VARIATION INEQUALITIES , 1975 .

[31]  E. Montroll,et al.  On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation , 1984 .

[32]  Stefan Tappe,et al.  Tempered stable distributions and processes , 2013, 1907.05141.

[33]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[34]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[35]  V. Zolotarev One-dimensional stable distributions , 1986 .

[36]  Hiroki Masuda,et al.  On simulation of tempered stable random variates , 2010, J. Comput. Appl. Math..

[37]  StehfestHarald Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970 .

[38]  K. Górska,et al.  Exact and explicit probability densities for one-sided Lévy stable distributions. , 2010, Physical review letters.

[39]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[40]  Neil Shephard,et al.  Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models , 2003 .

[41]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[42]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[43]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[44]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[45]  W. Härdle,et al.  Statistical Tools for Finance and Insurance , 2003 .

[46]  D. Stephens,et al.  Simulation and inference for stochastic volatility models driven by Lévy processes , 2007 .

[47]  J. Rosínski Tempering stable processes , 2007 .

[48]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[49]  V. Todorov Jump activity estimation for pure-jump semimartingales via self-normalized statistics , 2015, 1508.04216.

[50]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[51]  Shashanka S. Mitra Distribution of Symmetric Stable Laws of Index $2^{-n}$ , 1981 .

[52]  S. Takenaka Stable Non-Gaussian Random Processes - Stochastic Models with Infinite Variance - G. Samorodnitsky; M. S. Taqqu. , 1996 .

[53]  Ward Whitt,et al.  Numerical Inversion of Laplace Transforms of Probability Distributions , 1995, INFORMS J. Comput..

[54]  J. Rosínski Series Representations of Lévy Processes from the Perspective of Point Processes , 2001 .

[55]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[56]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[57]  P. Carr,et al.  The Finite Moment Log Stable Process and Option Pricing , 2003 .

[58]  Marius Hofert,et al.  Sampling Exponentially Tilted Stable Distributions , 2011, TOMC.

[59]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[60]  Michael Grabchak,et al.  On a new Class of Tempered Stable Distributions: Moments and Regular Variation , 2011, Journal of Applied Probability.

[61]  D. P. Gaver,et al.  Observing Stochastic Processes, and Approximate Transform Inversion , 1966, Oper. Res..

[62]  M. S. Ridout,et al.  Generating random numbers from a distribution specified by its Laplace transform , 2009, Stat. Comput..

[63]  Bent Jørgensen,et al.  Exponential Dispersion Models and Extensions: A Review , 1992 .

[64]  R. Weron Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables" , 1996 .