Numerical Simulation of Sound Generated by Vortex Pairing in a Mixing Layer

A numerical code solving the filtered Navier-Stokes equations is developed using special techniques of computational aeroacoustics. This approach allows a direct determination of the compressible field on a computational domain including the acoustic far field. A two-dimensional mixing layer between two flows at M 1 = 0.12 and M 2 = 0.48 is simulated. The Reynolds number built up from the initial vorticity thickness and the velocity difference across the mixing layer is Re ω = 1.28 x 10 4 . An appropriate forcing of the mixing layer is defined to have only one pairing in the computational domain at a fixed location. The sound generation pattern for a single pairing displays a double spiral structure, corresponding to the rotating quadrupole associated to two corotative vortices. Successive pairings produce an acoustic radiation at the frequency of this mechanism. The directly computed far-field sound is then compared to the prediction of Lighthill's acoustic analogy (Lighthill, M. J., On Sound Generated Aerodynamically-I. General Theory, Proceedings of the Royal Society of London, Vol. 211, Series A 1107, 1952, pp. 564-587) based on the aerodynamic fluctuations provided by the large-eddy simulation code. Two integral formulations of the analogy, based on spatial derivatives and time derivatives, respectively, are tested. Results are in good qualitative agreement with the results of direct simulation. The accuracy is, however, greater with the formulation using time derivatives instead of spatial derivatives.

[1]  M. C. O L O N I U S,et al.  Sound generation in a mixing layer , 2022 .

[2]  C. Tam,et al.  RADIATION AND OUTFLOW BOUNDARY CONDITIONS FOR DIRECT COMPUTATION OF ACOUSTIC AND FLOW DISTURBANCES IN A NONUNIFORM MEAN FLOW , 1996 .

[3]  Israel J Wygnanski,et al.  On the perseverance of a quasi-two-dimensional eddy-structure in a turbulent mixing layer , 1979, Journal of Fluid Mechanics.

[4]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[5]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[6]  J. Freund Acoustic sources in a turbulent jet: A direct numerical simulation study , 1999 .

[7]  A. K. M. F. Hussain Coherent structures - Reality and myth. [in turbulent shear flow , 1983 .

[8]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[9]  Chih-Ming Ho,et al.  Subharmonics and vortex merging in mixing layers , 1982, Journal of Fluid Mechanics.

[10]  A. Michalke,et al.  On the inviscid instability of the hyperbolictangent velocity profile , 1964, Journal of Fluid Mechanics.

[11]  F. Browand,et al.  Vortex pairing : the mechanism of turbulent mixing-layer growth at moderate Reynolds number , 1974, Journal of Fluid Mechanics.

[12]  S. Crow,et al.  Orderly structure in jet turbulence , 1971, Journal of Fluid Mechanics.

[13]  P. Moin,et al.  Boundary conditions for direct computation of aerodynamic sound generation , 1993 .

[14]  Christopher K. W. Tam,et al.  Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones , 1998 .

[15]  Christopher K. W. Tam,et al.  Computational aeroacoustics - Issues and methods , 1995 .

[16]  Parviz Moin,et al.  Direct computation of Mach wave radiation in an axisymmetric supersonic jet , 1997 .

[17]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[18]  S. Ianniello AEROACOUSTIC RESEARCH IN EUROPE: THE CEAS-ASC REPORT ON 2000 HIGHLIGHTS , 2002 .

[19]  D. G. Crighton,et al.  Basic principles of aerodynamic noise generation , 1975 .

[20]  Sanjiva K. Lele,et al.  Computational aeroacoustics - A review , 1997 .

[21]  R Hixon,et al.  Evaluation of boundary conditions for computational aeroacoustics , 1995 .

[22]  G.,et al.  TOWARD THE LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENT FLOWS , 2022 .

[23]  Parviz Moin,et al.  Direct computation of the sound from a compressible co-rotating vortex pair , 1992 .

[24]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[25]  A. Powell Theory of Vortex Sound , 1964 .

[26]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  P. Moin,et al.  Sound generation in a mixing layer , 1997, Journal of Fluid Mechanics.

[28]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[29]  R. R. Mankbadi,et al.  Review of Computational Aeroacoustics in Propulsion Systems , 1999 .

[30]  P. Moin,et al.  Direct computation of the sound generated by vortex pairing in an axisymmetric jet , 1995, Journal of Fluid Mechanics.

[31]  Sutanu Sarkar,et al.  Simulations of Spatially Developing Two-Dimensional Shear Layers and Jets , 1997 .

[32]  M. Y. Hussaini,et al.  COMPUTATION OF THE ACOUSTIC RADIATION FROM BOUNDED HOMOGENEOUS FLOWS , 1993 .

[33]  Parviz Moin,et al.  Direct Simulation Of A Mach 1.92 Jet And Its Sound Field , 1998 .

[34]  Christophe Bogey,et al.  Calcul direct du bruit aérodynamique et validation de modèles acoustiques hybrides , 2000 .