Correctness of Multiplicative Additive Proof Structures is NL-Complete

The authors revisit the correctness criterion for the multiplicative additive fragment of linear logic. We prove that deciding the correctness of corresponding proof structures is NL-complete.

[1]  Rob J. van Glabbeek,et al.  Proof nets for unit-free multiplicative-additive linear logic , 2005, TOCL.

[2]  L TortoraDeFaco The additive multiboxes , 2003 .

[3]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[4]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[5]  Róbert Szelepcsényi The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.

[6]  Y. Lafont From proof-nets to interaction nets , 1995 .

[7]  Max I. Kanovich Horn programming in linear logic is NP-complete , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[8]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[9]  Kazushige Terui,et al.  On the Computational Complexity of Cut-Elimination in Linear Logic , 2003, ICTCS.

[10]  Neil D. Jones,et al.  New problems complete for nondeterministic log space , 1976, Mathematical systems theory.

[11]  Virgile Mogbil,et al.  Correctness of Multiplicative (and Exponential) Proof Structures is NL -Complete , 2007, CSL.

[12]  R. Esum,et al.  Tree Isomorphism and Some Other CompleteProblems for Deterministic LogspaceBirgit Jenner , 1997 .

[13]  J. Girard PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .

[14]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[15]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[16]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[17]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[18]  Stefano Guerrini,et al.  Correctness of multiplicative proof nets is linear , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).