Correctness of Multiplicative Additive Proof Structures is NL-Complete
暂无分享,去创建一个
[1] Rob J. van Glabbeek,et al. Proof nets for unit-free multiplicative-additive linear logic , 2005, TOCL.
[2] L TortoraDeFaco. The additive multiboxes , 2003 .
[3] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[4] Omer Reingold,et al. Undirected ST-connectivity in log-space , 2005, STOC '05.
[5] Róbert Szelepcsényi. The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.
[6] Y. Lafont. From proof-nets to interaction nets , 1995 .
[7] Max I. Kanovich. Horn programming in linear logic is NP-complete , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.
[8] Róbert Szelepcsényi,et al. The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.
[9] Kazushige Terui,et al. On the Computational Complexity of Cut-Elimination in Linear Logic , 2003, ICTCS.
[10] Neil D. Jones,et al. New problems complete for nondeterministic log space , 1976, Mathematical systems theory.
[11] Virgile Mogbil,et al. Correctness of Multiplicative (and Exponential) Proof Structures is NL -Complete , 2007, CSL.
[12] R. Esum,et al. Tree Isomorphism and Some Other CompleteProblems for Deterministic LogspaceBirgit Jenner , 1997 .
[13] J. Girard. PROOF-NETS : THE PARALLEL SYNTAX FOR PROOF-THEORY , 1996 .
[14] Vincent Danos,et al. The structure of multiplicatives , 1989, Arch. Math. Log..
[15] Uzi Vishkin,et al. Constant Depth Reducibility , 1984, SIAM J. Comput..
[16] Vincent Danos. La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .
[17] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[18] Stefano Guerrini,et al. Correctness of multiplicative proof nets is linear , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).