Pyrenecyclodextrin‐Decorated Single‐Walled Carbon Nanotube Field‐Effect Transistors as Chemical Sensors

[1]  J. F. Stoddart,et al.  Light‐Induced Charge Transfer in Pyrene/CdSe‐SWNT Hybrids , 2008 .

[2]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[3]  Atula S. D. Sandanayaka,et al.  Self-assembled single-walled carbon nanotube:zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer. , 2007, Chemistry.

[4]  Anusorn Kongkanand,et al.  Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. , 2007, ACS nano.

[5]  Chien-Yuan Pan,et al.  In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor. , 2007, Small.

[6]  Douglas R. Kauffman,et al.  Single-walled carbon-nanotube spectroscopic and electronic field-effect transistor measurements: a combined approach. , 2007, Small.

[7]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[8]  Y. Takashima,et al.  Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. , 2007, Journal of the American Chemical Society.

[9]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[10]  H. Anderson,et al.  Insulated molecular wires. , 2007, Angewandte Chemie.

[11]  I. Kilpeläinen,et al.  Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. , 2007, Chemical communications.

[12]  M. Strano,et al.  Reversible control of carbon nanotube aggregation for a glucose affinity sensor. , 2006, Angewandte Chemie.

[13]  Yongqiang Dong,et al.  Wrapping Carbon Nanotubes in Pyrene-Containing Poly(phenylacetylene) Chains: Solubility, Stability, Light Emission, and Surface Photovoltaic Properties , 2006 .

[14]  Jurriaan Huskens,et al.  Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. , 2006, Chemical Society reviews.

[15]  S. R. Silva,et al.  Polymer supported carbon nanotube arrays for field emission and sensor devices , 2006 .

[16]  J. F. Stoddart,et al.  Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. , 2006, Nano letters.

[17]  E. Snow,et al.  Role of defects in single-walled carbon nanotube chemical sensors. , 2006, Nano letters.

[18]  Philip G Collins,et al.  Chemically induced conductance switching in carbon nanotube circuits. , 2006, Physical review letters.

[19]  Yong Chen,et al.  Cooperative binding and multiple recognition by bridged bis(beta-cyclodextrin)s with functional linkers. , 2006, Accounts of chemical research.

[20]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[21]  He Tian,et al.  Recent progress on switchable rotaxanes. , 2006, Chemical Society reviews.

[22]  M. Chhowalla,et al.  Design criteria for transparent single-wall carbon nanotube thin-film transistors. , 2006, Nano letters.

[23]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[24]  Bao-hang Han,et al.  Cyclodextrin rotaxanes and polyrotaxanes. , 2006, Chemical reviews.

[25]  M. Prato,et al.  CNT-CdTe versatile donor-acceptor nanohybrids. , 2006, Journal of the American Chemical Society.

[26]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Thomas E. Eurell,et al.  Single‐Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long‐Term Labels and Optical Sensors , 2005 .

[28]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[29]  M. Prato,et al.  Carbon nanotubes in electron donor-acceptor nanocomposites. , 2005, Accounts of chemical research.

[30]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing , 2005, Nano letters.

[31]  Hui Xie,et al.  Importance of aromatic content for peptide/single-walled carbon nanotube interactions. , 2005, Journal of the American Chemical Society.

[32]  M. Prato,et al.  Functional single-wall carbon nanotube nanohybrids--associating SWNTs with water-soluble enzyme model systems. , 2005, Journal of the American Chemical Society.

[33]  P. Joshi,et al.  Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. , 2005, Analytical chemistry.

[34]  J. F. Stoddart,et al.  Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry. , 2005, Small.

[35]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[36]  M. Prato,et al.  Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. , 2004, Angewandte Chemie.

[37]  Maogen Zhang,et al.  Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. , 2004, Analytical chemistry.

[38]  Seung Yol Jeong,et al.  Enhanced Sensitivity of a Gas Sensor Incorporating Single‐Walled Carbon Nanotube–Polypyrrole Nanocomposites , 2004 .

[39]  Satish Nagarajaiah,et al.  Carbon Nanotube Film Sensors , 2004 .

[40]  Qiang Fu,et al.  Polymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor , 2004 .

[41]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[42]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[43]  Alexander Star,et al.  Short-channel effects in contact-passivated nanotube chemical sensors , 2003 .

[44]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[45]  A. Goldoni,et al.  Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. , 2003, Journal of the American Chemical Society.

[46]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[47]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[48]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Grüner,et al.  Influence of Mobile Ions on Nanotube Based FET Devices , 2003 .

[50]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[51]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[52]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[53]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[54]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[55]  James R Heath,et al.  Starched carbon nanotubes. , 2002, Angewandte Chemie.

[56]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[57]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[58]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[59]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[60]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[61]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[62]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[63]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[64]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[65]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[66]  Otto Zhou,et al.  Deformation of carbon nanotubes in nanotube–polymer composites , 1999 .

[67]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[68]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[69]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[70]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[71]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .

[72]  Rajesh R Naik,et al.  Peptide-mediated formation of single-wall carbon nanotube composites. , 2006, Nano letters.