Hard and Easy Problems for Supersingular Isogeny Graphs
暂无分享,去创建一个
[1] Kristin E. Lauter,et al. Cryptographic Hash Functions from Expander Graphs , 2008, Journal of Cryptology.
[2] W. Waterhouse,et al. Abelian varieties over finite fields , 1969 .
[3] M. Vignéras. Arithmétique des Algèbres de Quaternions , 1980 .
[4] Reza Azarderakhsh,et al. A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies , 2017, Financial Cryptography.
[5] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over F_p , 2013 .
[6] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mat , 2013, Designs, Codes and Cryptography.
[7] Benjamin Wesolowski,et al. Loop-Abort Faults on Supersingular Isogeny Cryptosystems , 2017, PQCrypto.
[8] Steven D. Galbraith,et al. On the Security of Supersingular Isogeny Cryptosystems , 2016, ASIACRYPT.
[9] Steven D. Galbraith,et al. Signature Schemes Based On Supersingular Isogeny Problems , 2016, IACR Cryptol. ePrint Arch..
[10] A. Pizer,et al. An algorithm for computing modular forms on Γ0(N) , 1980 .
[11] S. Galbraith. Constructing Isogenies between Elliptic Curves Over Finite Fields , 1999 .
[12] Christophe Petit,et al. Faster Algorithms for Isogeny Problems Using Torsion Point Images , 2017, ASIACRYPT.
[13] N. Ankeny. The least quadratic non residue , 1952 .
[14] Juan Marcos Cervino,et al. On the Correspondence between Supersingular Elliptic Curves and maximal quaternionic Orders , 2004, math/0404538.
[15] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .
[16] Yan Bo Ti,et al. Fault Attack on Supersingular Isogeny Cryptosystems , 2017, PQCrypto.
[17] D. Kohel. Endomorphism rings of elliptic curves over finite fields , 1996 .
[18] Tanja Lange,et al. Post-quantum cryptography , 2008, Nature.
[19] David Jao,et al. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..
[20] Gaetan Bisson,et al. Computing the endomorphism ring of an ordinary elliptic curve over a finite field , 2009, IACR Cryptol. ePrint Arch..
[21] Joseph H. Silverman,et al. The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.
[22] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[23] Kristin E. Lauter,et al. On the quaternion -isogeny path problem , 2014, LMS J. Comput. Math..