Supplementary Appendix to : “ Jump Tails , Extreme Dependencies , and the Distribution of Stock Returns ” ∗

We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. Our estimates are based on in-fill asymptotics for directly identifying the jumps, together with Extreme Value Theory (EVT) approximations and methods-of-moments for assessing the tail decay parameters and tail dependencies. On implementing the procedures with a panel of intraday prices for a large cross-section of individual stocks and the S&P 500 market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and close to symmetric, and show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day variation in the diffusive volatility account for the “extreme” joint dependencies observed at the daily level.

[1]  Charlotte Christiansen,et al.  A Comprehensive Look at Financial Volatility Prediction by Economic Variables , 2011 .

[2]  B. Christensen,et al.  Latent Integrated Stochastic Volatility, Realized Volatility, and Implied Volatility: A State Space Approach , 2011 .

[3]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[4]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[5]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[6]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[7]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[8]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[9]  L. de Haan,et al.  Bivariate tail estimation: dependence in asymptotic independence , 2004 .

[10]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[11]  Jonathan B. Hill Extremal memory of stochastic volatility with an application to tail shape inference , 2011 .

[12]  Tim Bollerslev,et al.  Jumps and Betas: A New Framework for Disentangling and Estimating Systematic Risks , 2007 .

[13]  Cecilia Mancini Non-parametric Threshold Estimationfor Models with Stochastic DiffusionCoefficient and Jumps , 2006 .

[14]  Jonathan A. Tawn,et al.  A Comparison of Methods for Estimating the Extremal Index , 2000 .

[15]  Tim Bollerslev,et al.  Tails, Fears and Risk Premia , 2009 .

[16]  Niklas Wagner,et al.  Measuring Tail Thickness Under GARCH and an Application to Extreme Exchange Rate Changes , 2003 .

[17]  R. Engle,et al.  Anticipating Correlations: A New Paradigm for Risk Management , 2009 .

[18]  J. Tawn,et al.  Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications , 2004 .

[19]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  C. Stărică,et al.  Multivariate extremes for models with constant conditional correlations , 1999 .

[21]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[22]  Adrian Pagan,et al.  Estimating the Density Tail Index for Financial Time Series , 1997, Review of Economics and Statistics.

[23]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[24]  T. Bollerslev,et al.  Continuous-Time Models, Realized Volatilities, and Testable Distributional Implications for Daily Stock Returns , 2007 .

[25]  Jean Jacod,et al.  Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes , 2009 .

[26]  J. MacKinnon,et al.  NUMERICAL DISTRIBUTION FUNCTIONS OF FRACTIONAL UNIT ROOT AND COINTEGRATION TESTS , 2010 .

[27]  Martin M. Andreasen How Non-Gaussian Shocks Affect Risk Premia in Non-Linear DSGE Models , 2011 .

[28]  Torben G. Andersen,et al.  No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications , 2007 .

[29]  V. Pipiras,et al.  Estimation of parameters in heavy-tailed distribution when its second order tail parameter is known , 2010 .

[30]  T. Bollerslev,et al.  No-Arbitrage Semi-Martingale Restrictions for Continuous-Time Volatility Models Subject to Leverage Effects, Jumps and I.I.D. Noise: Theory and Testable Distributional Implications , 2007 .

[31]  Stefan Straetmans,et al.  Extreme Us Stock Market Fluctuations in the Wake of 9/11 , 2003 .

[32]  Jonathan B. Hill TAIL AND NONTAIL MEMORY WITH APPLICATIONS TO EXTREME VALUE AND ROBUST STATISTICS , 2011, Econometric Theory.

[33]  Richard A. Davis,et al.  The extremogram: a correlogram for extreme events , 2009, 1001.1821.

[34]  Minimax Regression Quantiles , 2010 .

[35]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[36]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[37]  C. Christiansen,et al.  Sign and Quantiles of the Realized Stock-Bond Correlation , 2010 .

[38]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[39]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[40]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[41]  Tim Bollerslev,et al.  Risk, Jumps, and Diversification , 2007 .

[42]  B. Christensen,et al.  The impact of health changes on labor supply: evidence from merged data on individual objective medical diagnosis codes and early retirement behavior. , 2010, Health economics.

[43]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[44]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[45]  Francis X. Diebold,et al.  Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange , 2002 .

[46]  R. Kohn,et al.  Modeling Dependence Using Skew T Copulas: Bayesian Inference and Applications , 2010 .

[47]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[48]  Cecilia Mancini,et al.  Identifying the covariation between the diffusion parts and the co-jumps given discrete observations , 2008 .

[49]  B. Kelly Risk Premia and the Conditional Tails of Stock Returns , 2009 .

[50]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[51]  S. Poon,et al.  Financial Modeling Under Non-Gaussian Distributions , 2006 .

[52]  H. Joe Multivariate extreme value distributions , 1997 .

[53]  B. Christensen,et al.  Level Shifts in Volatility and the Implied-Realized Volatility Relation , 2010 .

[54]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[55]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[56]  Yacine Ait-Sahalia,et al.  Modeling Financial Contagion Using Mutually Exciting Jump Processes , 2010 .

[57]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[58]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[59]  L. de Haan,et al.  Estimating the spectral measure of an extreme value distribution , 1997 .

[60]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[61]  T. Bollerslev,et al.  Estimation of Jump Tails , 2010 .

[62]  T. Mikosch,et al.  Limit theory for the sample autocorrelations and extremes of a GARCH (1,1) process , 2000 .

[63]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[64]  Kee-Hong Bae,et al.  A New Approach to Measuring Financial Contagion , 2000 .

[65]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[66]  Disentangling Systematic and Idiosyncratic Risk for Large Panels of Assets , 2010 .

[67]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .