The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism

The hyperthermophile Nanoarchaeum equitans is an obligate symbiont growing in coculture with the crenarchaeon Ignicoccus. Ribosomal protein and rRNA-based phylogenies place its branching point early in the archaeal lineage, representing the new archaeal kingdom Nanoarchaeota. The N. equitans genome (490,885 base pairs) encodes the machinery for information processing and repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide biosyntheses. It is the smallest microbial genome sequenced to date, and also one of the most compact, with 95% of the DNA predicted to encode proteins or stable RNAs. Its limited biosynthetic and catabolic capacity indicates that N. equitans' symbiotic relationship to Ignicoccus is parasitic, making it the only known archaeal parasite. Unlike the small genomes of bacterial parasites that are undergoing reductive evolution, N. equitans has few pseudogenes or extensive regions of noncoding DNA. This organism represents a basal archaeal lineage and has a highly reduced genome.

[1]  D. Söll,et al.  Cysteine Activation Is an Inherent in Vitro Property of Prolyl-tRNA Synthetases* , 2002, The Journal of Biological Chemistry.

[2]  H Philippe,et al.  Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. , 2000, Trends in genetics : TIG.

[3]  J. Andersson,et al.  Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. , 2001, Molecular biology and evolution.

[4]  H. Huber,et al.  Detection of 16S rDNA sequences representing the novel phylum "Nanoarchaeota": indication for a wide distribution in high temperature biotopes. , 2002, Systematic and applied microbiology.

[5]  Z. Hu,et al.  Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  W. Gilbert,et al.  The exon theory of genes. , 1987, Cold Spring Harbor symposia on quantitative biology.

[7]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[8]  W. Ford Doolittle,et al.  Genes in pieces: were they ever together? , 1978, Nature.

[9]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[10]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[11]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[12]  Hervé Philippe,et al.  Archaeal phylogeny based on ribosomal proteins. , 2002, Molecular biology and evolution.

[13]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[14]  A. Slesarev,et al.  A two-subunit type I DNA topoisomerase (reverse gyrase) from an extreme hyperthermophile. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Schimmel,et al.  Assembly of a class I tRNA synthetase from products of an artificially split gene. , 1991, Biochemistry.

[16]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[17]  J. Tiedje,et al.  DNA recovery from soils of diverse composition , 1996, Applied and environmental microbiology.

[18]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[19]  K. Stetter,et al.  The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. , 2003, Research in microbiology.

[20]  David A Case,et al.  A novel method for finding tRNA genes. , 2003, RNA.

[21]  R. Garrett,et al.  RNA–protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history , 1997, The EMBO journal.

[22]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[23]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[24]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[25]  J. M. González,et al.  A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. , 2002, Environmental microbiology.

[26]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[28]  S. Osawa,et al.  Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. , 1989, Journal of molecular biology.

[29]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[30]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[31]  Harald Huber,et al.  A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont , 2002, Nature.

[32]  W. Doolittle,et al.  Biodiversity: Something new under the sea , 2002, Nature.

[33]  K. Stetter,et al.  Isolation of a complete A1AO ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii , 2003, Extremophiles.

[34]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  James Lyons-Weiler,et al.  Relative apparent synapomorphy analysis (RASA). I: The statistical measurement of phylogenetic signal. , 1996, Molecular biology and evolution.

[36]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[37]  J D Palmer,et al.  Intron "sliding" and the diversity of intron positions. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Francine B. Perler,et al.  InBase: the Intein Database , 2002, Nucleic Acids Res..

[39]  Dieter Söll,et al.  Domain-specific recruitment of amide amino acids for protein synthesis , 2000, Nature.

[40]  A. Moya,et al.  Genome size reduction through multiple events of gene disintegration in Buchnera APS. , 2001, Trends in genetics : TIG.

[41]  G. Olsen,et al.  CRITICA: coding region identification tool invoking comparative analysis. , 1999, Molecular biology and evolution.

[42]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[43]  J. Short Molecular Evolution: Recombinant approaches for accessing biodiversity , 1997, Nature Biotechnology.

[44]  D. Armbruster,et al.  Properties of H. volcanii tRNA Intron Endonuclease Reveal a Relationship between the Archaeal and Eucaryal tRNA Intron Processing Systems , 1997, Cell.

[45]  Patrick Forterre,et al.  A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. , 2002, Trends in genetics : TIG.

[46]  J. Weissenbach,et al.  Mechanisms of Evolution in Rickettsia conorii and R. prowazekii , 2001, Science.

[47]  S. Eddy,et al.  Noncoding RNA genes identified in AT-rich hyperthermophiles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Stetter,et al.  Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp nov and Ignicoccus pacificus sp nov. and Ignicoccus pacificus sp. nov. , 2000, International journal of systematic and evolutionary microbiology.