A visual pathway for skylight polarization processing in Drosophila

Many insects use patterns of polarized light in the sky to orient and navigate. Here we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly’s sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the ‘sky compass’ pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.

[1]  Meghana Holla,et al.  A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila , 2018, Neuron.

[2]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[3]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[4]  Rachel I. Wilson,et al.  A Neural Network for Wind-Guided Compass Navigation , 2020, Neuron.

[5]  Justin Marshall,et al.  Patterns and properties of polarized light in air and water , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  Brian J. Duistermars,et al.  Mechanisms of Odor-Tracking: Multiple Sensors for Enhanced Perception and Behavior , 2010, Front. Cell. Neurosci..

[7]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[8]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[9]  Rüdiger Wehner,et al.  Polarization vision in bees , 1986, Nature.

[10]  Gerald M. Rubin,et al.  The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster , 1991, Cell and Tissue Research.

[11]  U. Homberg,et al.  A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect , 2011, PloS one.

[12]  Feng Li,et al.  A connectome and analysis of the adult Drosophila central brain , 2020, bioRxiv.

[13]  Thomas Labhart,et al.  Can invertebrates see the e-vector of polarization as a separate modality of light? , 2016, Journal of Experimental Biology.

[14]  U. Homberg,et al.  Neuroarchitecture of the central complex of the desert locust: Tangential neurons , 2020, The Journal of comparative neurology.

[15]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[16]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[17]  Camilla R. Sharkey,et al.  The spectral sensitivity of Drosophila photoreceptors , 2020, Scientific Reports.

[18]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.

[19]  Stanley Heinze Polarization Vision , 2014, Encyclopedia of Computational Neuroscience.

[20]  Mark Johnson,et al.  Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango , 2017, Neuron.

[21]  Thomas Labhart,et al.  Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila , 2016, The Journal of Neuroscience.

[22]  Hokto Kazama,et al.  A Multi-regional Network Encoding Heading and Steering Maneuvers in Drosophila , 2020, Neuron.

[23]  K. Pfeiffer,et al.  Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input , 2015, PloS one.

[24]  Thomas F. Mathejczyk,et al.  Heading choices of flying Drosophila under changing angles of polarized light , 2019, Scientific Reports.

[25]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[26]  Vivek Jayaraman,et al.  Author response: Building a functional connectome of the Drosophila central complex , 2018 .

[27]  Sean R. Eddy,et al.  A genetic, genomic, and computational resource for exploring neural circuit function , 2018, bioRxiv.

[28]  Michael H Dickinson,et al.  Death Valley, Drosophila, and the Devonian toolkit. , 2014, Annual review of entomology.

[29]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[30]  Uwe Homberg,et al.  Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.

[31]  K. Pfeiffer,et al.  Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus) , 2012, The Journal of comparative neurology.

[32]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[33]  Rachel I. Wilson,et al.  Sensorimotor experience remaps visual input to a heading-direction network , 2019, Nature.

[34]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[35]  Modality-specific circuits for skylight orientation in the fly visual system , 2019 .

[36]  Uwe Homberg,et al.  Integration of celestial compass cues in the central complex of the locust brain , 2018, Journal of Experimental Biology.

[37]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[38]  M. Fingerman,et al.  The Orientation of Drosophila to Plane Polarized Light , 1953 .

[39]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[40]  Peter T Weir,et al.  Flying Drosophila melanogaster maintain arbitrary but stable headings relative to the angle of polarized light , 2018, Journal of Experimental Biology.

[41]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[42]  Stanley Heinze,et al.  Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly , 2014 .

[43]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[44]  Ranu Jung,et al.  Encyclopedia of Computational Neuroscience , 2015, Springer New York.

[45]  U. Homberg,et al.  Behavioral analysis of polarization vision in tethered flying locusts , 2003, Journal of Comparative Physiology A.

[46]  Michael H. Dickinson,et al.  Celestial navigation in Drosophila , 2019, Journal of Experimental Biology.

[47]  Ko-Fan Chen,et al.  A Wake-Promoting Circadian Output Circuit in Drosophila , 2018, Current Biology.

[48]  G. Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Permutation P -values Should Never Be Zero: Calculating Exact P -values When Permutations Are Randomly Drawn , 2011 .

[49]  Dr. habil. Gábor Horváth,et al.  Polarized Light in Animal Vision , 2004, Springer Berlin Heidelberg.

[50]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[51]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[52]  U. Homberg,et al.  Two Compasses in the Central Complex of the Locust Brain , 2019, The Journal of Neuroscience.

[53]  Thomas Hummel,et al.  A topographic visual pathway into the central brain of Drosophila , 2017 .

[54]  D. Varjú,et al.  Polarized Light in Animal Vision: Polarization Patterns in Nature , 2004 .

[55]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[56]  U. Homberg,et al.  Coding of Azimuthal Directions via Time-Compensated Combination of Celestial Compass Cues , 2007, Current Biology.

[57]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[58]  Reinhard Wolf,et al.  Polarization sensitivity of course control inDrosophila melanogaster , 1980, Journal of comparative physiology.

[59]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[60]  M. Dickinson,et al.  Flying Drosophila Orient to Sky Polarization , 2012, Current Biology.

[61]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[62]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[63]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[64]  M. Dacke,et al.  Anatomical organization of the brain of a diurnal and a nocturnal dung beetle , 2017, The Journal of comparative neurology.

[65]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[66]  Gero Miesenböck,et al.  Neuronal Machinery of Sleep Homeostasis in Drosophila , 2014, Neuron.

[67]  Chi-Hon Lee,et al.  Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation , 2015, Nature Communications.

[68]  Rachel Wilson,et al.  Neural control of steering in walking Drosophila , 2020 .

[69]  Hokto Kazama,et al.  Parallel encoding of recent visual experience and self-motion during navigation in Drosophila , 2017, Nature Neuroscience.

[70]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[71]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[72]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  C. Desplan,et al.  Coordination between stochastic and deterministic specification in the Drosophila visual system , 2019, Science.

[74]  Richard Kempter,et al.  Quantifying circular–linear associations: Hippocampal phase precession , 2012, Journal of Neuroscience Methods.

[75]  Kei Ito,et al.  Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior , 2014, Front. Neural Circuits.

[76]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[77]  Volker Hartenstein,et al.  Neuronal Constituents and Putative Interactions Within the Drosophila Ellipsoid Body Neuropil , 2018, bioRxiv.

[78]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  Anna Honkanen,et al.  The insect central complex and the neural basis of navigational strategies , 2019, Journal of Experimental Biology.

[80]  Daryl M. Gohl,et al.  Differences in Neural Circuitry Guiding Behavioral Responses to Polarized light Presented to Either the Dorsal or Ventral Retina in Drosophila , 2014, Journal of neurogenetics.

[81]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[82]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[83]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[84]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[85]  Rachel I. Wilson,et al.  Neural circuit mechanisms for steering control in walking Drosophila , 2020, bioRxiv.

[86]  Rüdiger Wehner,et al.  The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation , 2006, Proceedings of the National Academy of Sciences.

[87]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[88]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[89]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[90]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[91]  S. Benzer,et al.  Monoclonal antibodies against the Drosophila nervous system. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[93]  Eric J. Warrant,et al.  Neural coding underlying the cue preference for celestial orientation , 2015, Proceedings of the National Academy of Sciences.

[94]  S. Wada,et al.  Spezielle randzonale ommatidien der fliegen (diptera : brachycera): architektur und verteilung in den komplexauaen , 1974, Zeitschrift für Morphologie der Tiere.

[95]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  D. Reiff,et al.  Color Processing in the Early Visual System of Drosophila , 2018, Cell.

[97]  Gordon J. Berman,et al.  Application of the hierarchical bootstrap to multi-level data in neuroscience , 2019, bioRxiv.

[98]  Qili Liu,et al.  Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit , 2016, Cell.

[99]  Minrong Ai,et al.  Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila , 2013, Nature Neuroscience.

[100]  M. Demerec,et al.  Biology of Drosophila , 1950 .

[101]  Vivek Jayaraman,et al.  The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor , 2020, Neuron.

[102]  V. Gallo,et al.  Unexpected Synergy: Macrophages and Schwann Cells Modulate Pathology in a Newborn Disease through a Shared Substrate , 2020, Neuron.

[103]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[104]  K Kirschfeld,et al.  Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells of Drosophila: visual physiology and photochemistry of transgenic animals , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  T Labhart,et al.  Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. , 2001, The Journal of experimental biology.

[106]  G. S. Watson,et al.  Statistical methods for the analysis of problems in animal orientation and certain biological rhythms , 1966 .

[107]  F. Diao,et al.  A Hard-Wired Glutamatergic Circuit Pools and Relays UV Signals to Mediate Spectral Preference in Drosophila , 2014, Neuron.

[108]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[109]  James J. Foster,et al.  Polarisation vision: overcoming challenges of working with a property of light we barely see , 2018, The Science of Nature.

[110]  Sung Soo Kim,et al.  Generation of stable heading representations in diverse visual scenes , 2019, Nature.

[111]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[112]  Nicholas D Schiff,et al.  Central Lateral Thalamic Nucleus Stimulation Awakens Cortex via Modulation of Cross-Regional, Laminar-Specific Activity during General Anesthesia , 2020, Neuron.

[113]  Davi Bock,et al.  The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor , 2019, Neuron.

[114]  Armin Huber,et al.  Blue- and Green-Absorbing Visual Pigments ofDrosophila: Ectopic Expression and Physiological Characterization of the R8 Photoreceptor Cell-Specific Rh5 and Rh6 Rhodopsins , 1999, The Journal of Neuroscience.

[115]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly , 2013, The Journal of comparative neurology.