Several identities containing central binomial coefficients and derived from series expansions of powers of the arcsine function

In the paper, with the aid of the series expansions of the square or cubic of the arcsine function, the authors establish several possibly new combinatorial identities containing the ratio of two central binomial coefficients which are related to the Catalan numbers in combinatorial number theory.

[1]  Feng Qi (祁锋),et al.  Integral Representations of the Catalan Numbers and Their Applications , 2017 .

[2]  E. Hetmaniok,et al.  CONVOLUTION IDENTITIES FOR CENTRAL BINOMIAL NUMBERS , 2013 .

[3]  Feng Qi (祁锋),et al.  Simplifying coefficients in differential equations for generating function of Catalan numbers , 2019, Journal of Taibah University for Science.

[4]  Jonathan M. Borwein,et al.  Experimentation in Mathematics: Computational Paths to Discovery , 2004 .

[5]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[6]  Feng Qi (祁锋),et al.  Some properties of the Catalan–Qi function related to the Catalan numbers , 2016, SpringerPlus.

[7]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[8]  Feng Qi (祁锋),et al.  The inverse of a triangular matrix and several identities of the Catalan numbers , 2019, Applicable Analysis and Discrete Mathematics.

[9]  Hongwei Chen,et al.  Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers , 2016, J. Integer Seq..

[10]  Khristo N. Boyadzhiev,et al.  Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers , 2012 .

[11]  Feng Qi (祁锋),et al.  Some Properties of the Fuss–Catalan Numbers , 2018, Mathematics.

[12]  Feng Qi (祁锋),et al.  A ratio of finitely many gamma functions and its properties with applications , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[13]  B. Sethuraman,et al.  A Note on the Hankel Transform of the Central Binomial Coefficients , 2008 .

[14]  Edwin P. Adams,et al.  Smithsonian Mathematical Formulae and Tables of Elliptic Functions , 2009 .

[15]  Feng Qi (祁锋),et al.  An integral representation, complete monotonicity, and inequalities of the Catalan numbers , 2018 .

[16]  D. H. Lehmer Interesting Series Involving the Central Binomial Coefficient , 1985 .

[17]  J. Borwein,et al.  Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .

[18]  Michael Z. Spivey The Art of Proving Binomial Identities , 2019 .

[19]  Victor J. W. Guo,et al.  PROOF OF TWO CONJECTURES ON SUPERCONGRUENCES INVOLVING CENTRAL BINOMIAL COEFFICIENTS , 2020 .

[20]  J. Campbell New series involving harmonic numbers and squared central binomial coefficients , 2019 .

[21]  T. Koshy Catalan Numbers with Applications , 2008 .

[22]  B. Zhang,et al.  Sharp Wilker and Huygens type inequalities for trigonometric and inverse trigonometric functions , 2020 .

[23]  G. M. An Introduction to the Theory of Infinite Series , 1908, Nature.

[24]  Feng Qi (祁锋),et al.  J an 2 02 1 FIVE IDENTITIES INVOLVING THE PRODUCT OR RATIO OF TWO CENTRAL BINOMIAL COEFFICIENTS , 2021 .

[25]  Lionel Vaux,et al.  The differential ? -calculus , 2007 .

[26]  Feng Qi (祁锋),et al.  Three Identities of the Catalan-Qi Numbers , 2016 .

[27]  David M. Bradley,et al.  A Class of Series Acceleration Formulae for Catalan's Constant , 1999, 0706.0356.

[28]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[29]  Renzo Sprugnoli,et al.  Sums of reciprocals of the central binomial coefficients. , 2006 .

[30]  M.Yu. Kalmykov,et al.  New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams , 2000 .

[31]  Jovan Mikić,et al.  On Certain Sums Divisible by the Central Binomial Coefficient , 2020, J. Integer Seq..

[32]  Feng Qi (祁锋),et al.  An analytic generalization of the Catalan numbers and its integral representation , 2020, 2005.13515.

[33]  Feng Qi (祁锋),et al.  Several formulas for special values of the Bell polynomials of the second kind and applications , 2017 .

[34]  Chao Chen Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions , 2012 .

[35]  M. Yu. Kalmykov,et al.  lsjk - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions , 2005, Comput. Phys. Commun..

[36]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[37]  Steven Roman,et al.  An Introduction to Catalan Numbers , 2015 .