Big Bang in Dipole Cosmology

We continue the study of dipole cosmology framework put forward in \cite{Krishnan:2022qbv}, a beyond FLRW setting that has a preferred direction in the metric which may be associated with a cosmological tilt, a cosmic dipole. In this setup the shear and the tilt can be positive or negative given the dipole direction. Here we focus on the behaviour near the Big Bang (BB) in this setting. We first analyze a single fluid model with a generic constant equation of state $w$. In this case shear and the tilt have the same signs. While details of the behavior near the BB depends on $w$ and the other initial conditions, we find that when the shear is negative we have a shear dominated BB singularity, whereas for a positive shear we have a much milder singularity, the whimper singularity \cite{Ellis:1974ug}, at which the tilt blows up while curvature invariants remain finite. We also analyze dipole $\Lambda$CDM model and explore its near BB behavior, which besides the shear has two tilt parameters, one for radiation and one for the pressureless matter. For positive (negative) shear we again find whimper (curvature) singularity. Moreover, when the tilt parameters have opposite signs, the shear can change sign from negative to positive in the course of evolution of the Universe. We show that the relative tilt of the radiation and the matter generically remains sizeable at late times.

[1]  E. Ó Colgáin,et al.  Anisotropic distance ladder in Pantheon+supernovae , 2023, Physical Review D.

[2]  H. Feldman,et al.  Analyzing the large-scale bulk flow using cosmicflows4: Increasing tension with the standard cosmological model , 2023, Monthly Notices of the Royal Astronomical Society.

[3]  F. Mena,et al.  Asymptotic structure and stability of spatially homogeneous space-times with a positive cosmological constant , 2023, 2302.01726.

[4]  C. Krishnan,et al.  A tilt instability in the cosmological principle , 2022, The European Physical Journal C.

[5]  C. Krishnan,et al.  Dipole cosmology: the Copernican paradigm beyond FLRW , 2022, Journal of Cosmology and Astroparticle Physics.

[6]  L. Shamir,et al.  Is the observable Universe consistent with the cosmological principle? , 2022, Classical and Quantum Gravity.

[7]  J. Santiago,et al.  Timelike vs null deceleration parameter in tilted Friedmann universes , 2022, 2203.01126.

[8]  M. Chu,et al.  Directional variations of cosmological parameters from the Planck CMB data , 2022, Physical Review D.

[9]  C. Tsagas The deceleration parameter in ‘tilted’ universes: generalising the Friedmann background , 2021, The European Physical Journal C.

[10]  A. Singal Peculiar motion of Solar system from the Hubble diagram of supernovae Ia and its implications for cosmology , 2021, Monthly Notices of the Royal Astronomical Society.

[11]  M. M. Sheikh-Jabbari,et al.  Hints of FLRW breakdown from supernovae , 2021, Physical Review D.

[12]  Sebastian von Hausegger,et al.  A Test of the Cosmological Principle with Quasars , 2020, 2009.14826.

[13]  Y. Heydarzade,et al.  FLRW-cosmology in generic gravity theories , 2020, The European Physical Journal C.

[14]  R. Maartens,et al.  Testing the cosmological principle in the radio sky , 2019, Journal of Cosmology and Astroparticle Physics.

[15]  A. L. Maroto,et al.  Non-comoving cosmology , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  D. D. Pawar,et al.  Tilted cosmological model consisting two forms of dark energy , 2018, Modern Physics Letters A.

[17]  R. Maartens,et al.  Testing the standard model of cosmology with the SKA: the cosmic radio dipole , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  R. Mohayaee,et al.  Evidence for anisotropy of cosmic acceleration , 2018, Astronomy & Astrophysics.

[19]  J. Barrow,et al.  Evolution of cyclic mixmaster universes with noncomoving radiation , 2017, 1710.00747.

[20]  C. Tsagas,et al.  Deceleration parameter in tilted Friedmann universes , 2015, 1507.04266.

[21]  P. Joshi Spacetime Singularities , 2013, 1311.0449.

[22]  M. Sheikh-Jabbari,et al.  Revisiting Cosmic No-Hair Theorem for Inflationary Settings , 2012, 1203.0219.

[23]  A. Coley,et al.  Kinematic and Weyl singularities , 2006, gr-qc/0608134.

[24]  G. Ellis The Bianchi models: Then and now , 2006 .

[25]  A. Coley,et al.  Fluid observers and tilting cosmology , 2006, gr-qc/0605128.

[26]  D. Eriksson,et al.  Tilted cosmological models of Bianchi type V , 2005, gr-qc/0509125.

[27]  A. Coley,et al.  A dynamical systems approach to the tilted Bianchi models of solvable type , 2004, gr-qc/0409100.

[28]  A. Coley,et al.  Bianchi cosmologies: a tale of two tilted fluids , 2004, gr-qc/0406120.

[29]  P. Steinhardt,et al.  Kasner and mixmaster behavior in universes with equation of state w >= 1 , 2003, hep-th/0312009.

[30]  J. Barrow,et al.  The future of tilted Bianchi universes , 2003, gr-qc/0304050.

[31]  J. Barrow,et al.  The Weyl tensor in spatially homogeneous cosmological models , 2002, gr-qc/0206061.

[32]  M. Goliath,et al.  Isotropization of two-component fluids , 2000, gr-qc/0004069.

[33]  G. Ellis,et al.  Homogeneous cosmologies with a cosmological constant , 1998, gr-qc/9811068.

[34]  Hewitt,et al.  Dynamical systems approach to tilted Bianchi cosmologies: Irrotational models of type V. , 1992, Physical review. D, Particles and fields.

[35]  M. S. Madsen,et al.  Structure of the initial singularity in LRS Bianchi type-V models , 1986 .

[36]  R. Wald Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant , 1983 .

[37]  G. Ellis,et al.  Singularities in Bianchi cosmologies. , 1979 .

[38]  G. Ellis,et al.  Singular space-times , 1977 .

[39]  C. Collins Tilting at cosmological singularities , 1974 .

[40]  G. Ellis,et al.  Was the big bang a whimper? , 1974 .

[41]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[42]  G. Ellis,et al.  Tilted homogeneous cosmological models , 1973 .

[43]  S. Hawking,et al.  Why is the Universe Isotropic , 1973 .

[44]  A. Raychaudhuri,et al.  Relativistic Cosmology. I , 1955 .

[45]  M. M. Sheikh-Jabbari,et al.  Black Hole Physics: From Collapse to Evaporation , 2022, Graduate Texts in Physics.

[46]  R. Sussman,et al.  Non-comoving cold dark matter in a ΛCDM background , 2021 .

[47]  Henk van Elst,et al.  Cosmological models: Cargese lectures 1998 , 1998 .

[48]  V. Belinskiǐ,et al.  Oscillatory approach to a singular point in the relativistic cosmology , 1970 .