Genetic Variation Determines PPARγ Function and Anti-diabetic Drug Response In Vivo

[1]  The protease fibroblast activation protein is a potential biomarker and therapeutic target in diabetes and fatty liver disease , 2015 .

[2]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[3]  Ankur Roy,et al.  Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo , 2014, Cell.

[4]  M. Lazar,et al.  Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. , 2014, Cell metabolism.

[5]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[6]  B. Peters,et al.  Personalized pharmacogenomics profiling using whole-genome sequencing. , 2014, Pharmacogenomics.

[7]  W. Sadee,et al.  Missing heritability of common diseases and treatments outside the protein-coding exome , 2014, Human Genetics.

[8]  Kyoung-Jae Won,et al.  Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers , 2014, Genes & development.

[9]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[10]  S. Mandrup,et al.  Peroxisome Proliferator-Activated Receptor γ and C/EBPα Synergistically Activate Key Metabolic Adipocyte Genes by Assisted Loading , 2013, Molecular and Cellular Biology.

[11]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[12]  M. Lazar,et al.  Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ , 2013, Proceedings of the National Academy of Sciences.

[13]  Jonathan K. Pritchard,et al.  The Functional Consequences of Variation in Transcription Factor Binding , 2013, PLoS genetics.

[14]  C. Glass,et al.  Impact of natural genetic variation on enhancer selection and function , 2013, Nature.

[15]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[16]  Michael D. Wilson,et al.  Cooperativity and Rapid Evolution of Cobound Transcription Factors in Closely Related Mammals , 2013, Cell.

[17]  C. Danko,et al.  Enhancer transcripts mark active estrogen receptor binding sites , 2013, Genome research.

[18]  D. Reed,et al.  QTL Analysis of Dietary Obesity in C57BL/6byj X 129P3/J F2 Mice: Diet- and Sex-Dependent Effects , 2013, PloS one.

[19]  L. Aaltonen,et al.  Lessons from functional analysis of genome-wide association studies. , 2013, Cancer research.

[20]  Kyoung-Jae Won,et al.  EBF2 determines and maintains brown adipocyte identity. , 2013, Cell metabolism.

[21]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[22]  M. Nóbrega,et al.  Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. , 2012, Human molecular genetics.

[23]  Jussi Paananen,et al.  Hyperglycemia and a Common Variant of GCKR Are Associated With the Levels of Eight Amino Acids in 9,369 Finnish Men , 2012, Diabetes.

[24]  Matthew T. Maurano,et al.  Widespread Site-Dependent Buffering of Human Regulatory Polymorphism , 2012, PLoS genetics.

[25]  Noboru Jo Sakabe,et al.  Transcriptional enhancers in development and disease , 2012, Genome Biology.

[26]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[27]  G. Siuzdak,et al.  Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids , 2011, Nature chemical biology.

[28]  Albin Sandelin,et al.  Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites , 2011, BMC Genomics.

[29]  Logan J Everett,et al.  Species-specific strategies underlying conserved functions of metabolic transcription factors. , 2011, Molecular endocrinology.

[30]  T. Mikkelsen,et al.  Comparative Epigenomic Analysis of Murine and Human Adipogenesis , 2010, Cell.

[31]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[32]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[33]  Michael D. Wilson,et al.  Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding , 2010, Science.

[34]  Jonathan Schug,et al.  Propagation of adipogenic signals through an epigenomic transition state. , 2010, Genes & development.

[35]  G. Tuteja,et al.  Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages , 2010, Molecular and Cellular Biology.

[36]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[37]  Kyle J. Gaulton,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[38]  Dorothy D. Sears,et al.  Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization , 2009, Proceedings of the National Academy of Sciences.

[39]  H. Stunnenberg,et al.  Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. , 2008, Genes & development.

[40]  Jonathan Schug,et al.  PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. , 2008, Genes & development.

[41]  R. Korstanje,et al.  Candidate genes for obesity revealed from a C57BL/6J × 129S1/SvImJ intercross , 2008, International Journal of Obesity.

[42]  Vip Viprakasit,et al.  A Regulatory SNP Causes a Human Genetic Disease by Creating a New Transcriptional Promoter , 2006, Science.

[43]  C. Kahn,et al.  Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. , 2004, Diabetes.

[44]  Claude Lenfant,et al.  Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition , 2004, Circulation.

[45]  Claude Lenfant,et al.  Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[46]  B. Shastry,et al.  SNP alleles in human disease and evolution , 2002, Journal of Human Genetics.

[47]  S. O’Rahilly,et al.  Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension , 1999, Nature.

[48]  W. Wahli,et al.  DNA Binding Properties of Peroxisome Proliferator-activated Receptor Subtypes on Various Natural Peroxisome Proliferator Response Elements , 1997, The Journal of Biological Chemistry.

[49]  J. Lehmann,et al.  An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ) (*) , 1995, The Journal of Biological Chemistry.

[50]  B. Spiegelman,et al.  mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. , 1994, Genes & development.

[51]  H. Green,et al.  QUANTITATIVE STUDIES OF THE GROWTH OF MOUSE EMBRYO CELLS IN CULTURE AND THEIR DEVELOPMENT INTO ESTABLISHED LINES , 1963, The Journal of cell biology.

[52]  C. Stoeckert,et al.  PPAR (cid:1) and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale , 2008 .

[53]  E S Lander,et al.  The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. , 2000, Nature genetics.

[54]  J. Lehmann,et al.  An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). , 1995, The Journal of biological chemistry.