Equivalence of Laguerre-Based Model Order Reduction and Moment Matching

The equivalence between the classical moment matching and the Laguerre-based reduction approaches is shown. In addition, this equivalence is generalized to include a family of coefficients known as generalized Markov parameters.

[1]  Alexandre Megretski,et al.  Fourier Series for Accurate, Stable, Reduced-Order Models in Large-Scale Linear Applications , 2005, SIAM J. Sci. Comput..

[2]  Wha Wil Schilders,et al.  Reduced Order Modelling of RLC-networks Using an SVD-Laguerre Based Method , 2004 .

[3]  Michel Verhaegen,et al.  Continuous-time identification of SISO systems using Laguerre functions , 1999, IEEE Trans. Signal Process..

[4]  Larbi Radouane,et al.  Decentralized adaptive control of linear interconnected systems based on Laguerre series representation , 1999, Autom..

[5]  Quan-Gen Zhou,et al.  A simplified algorithm for balanced realization of Laguerre network models , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[6]  Noël Tanguy,et al.  Laguerre-Gram reduced-order modeling , 2005, IEEE Transactions on Automatic Control.

[7]  Karl Meerbergen,et al.  Using Generalized Cayley Transformations within an Inexact Rational Krylov Sequence Method , 1998, SIAM J. Matrix Anal. Appl..

[8]  Quan-Gen Zhou,et al.  Construction of minimal realizations based on the generalized Markov parameters , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[9]  Andreas C. Cangellaris,et al.  Simulation of multiconductor transmission lines using Krylov subspace order-reduction techniques , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[11]  Luc Knockaert A note on strict passivity , 2005, Syst. Control. Lett..

[12]  William R. Cluett,et al.  Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..

[13]  Daniël De Zutter,et al.  Stable Laguerre-SVD reduced-order modeling , 2003 .

[14]  B. Wahlberg System identification using Laguerre models , 1991 .

[15]  Yiran Chen,et al.  Model reduction in the time-domain using Laguerre polynomials and Krylov methods , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[16]  L. Knockaert,et al.  Laguerre-based bandlimited reduced-order modeling , 2004, IEEE Transactions on Microwave Theory and Techniques.

[17]  Boris Lohmann,et al.  REAL INTERPOLATION POINTS IN MODEL REDUCTION: JUSTIFICATION, TWO SCHEMES AND AN ERROR BOUND , 2005 .

[18]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[19]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[20]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[21]  C.-J. Richard Shi,et al.  Model-order reduction by dominant subspace projection: error bound, subspace computation, and circuit applications , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Luc Knockaert,et al.  Laguerre-SVD reduced-order modeling , 2000 .

[23]  Kok Lay Teo,et al.  Continuous-time envelope-constrained filter design via Laguerre filters and 𝒽∞ optimization methods , 1998, IEEE Trans. Signal Process..