Remarks on the Monge–Kantorovich problem in the discrete setting
暂无分享,去创建一个
[1] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[2] I. Shafrir,et al. Distances between classes in $$W^{1,1}(\Omega ;{\mathbb {S}}^{1})$$W1,1(Ω;S1) , 2016, 1606.01526.
[3] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[4] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[5] Cyclical monotonicity and the ergodic theorem , 2014, Ergodic Theory and Dynamical Systems.
[6] Nathan Linial,et al. On the Vertices of the d-Dimensional Birkhoff Polytope , 2012, Discret. Comput. Geom..
[7] A. Vershik. Long History of the Monge-Kantorovich Transportation Problem , 2013 .
[8] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[9] V. Bogachev,et al. The Monge-Kantorovich problem: achievements, connections, and perspectives , 2012 .
[10] Nestor Guillen,et al. Five lectures on optimal transportation: Geometry, regularity and applications , 2010, 1011.2911.
[11] C. Villani. The founding fathers of optimal transport , 2009 .
[12] C. Villani. Optimal Transport: Old and New , 2008 .
[13] L. Kantorovich. On a Problem of Monge , 2006 .
[14] L. Kantorovich. On the Translocation of Masses , 2006 .
[15] J. Bourgain,et al. H1/2 maps with values into the circle: Minimal Connections, Lifting, and the Ginzburg–Landau equation , 2004 .
[16] C. Villani. Topics in Optimal Transportation , 2003 .
[17] L. Ambrosio. Lecture Notes on Optimal Transport Problems , 2003 .
[18] Etienne Sandier. Ginzburg-Landau minimizers from R^{n+1} to R^n and minimal connections , 2001 .
[19] L. Evans,et al. Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .
[20] S. Rachev,et al. Mass transportation problems , 1998 .
[21] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[22] L. Rüschendorf. On c-optimal random variables , 1996 .
[23] M. Knott,et al. On a generalization of cyclic monotonicity and distances among random vectors , 1994 .
[24] M. Knott,et al. On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .
[25] Jean-Michel Coron,et al. Relaxed Energies for Harmonic Maps , 1990 .
[26] M. Knott,et al. Note on the optimal transportation of distributions , 1987 .
[27] Haim Brezis,et al. Liquid Crystals and Energy Estimates for S2-Valued Maps , 1987 .
[28] J. Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context , 1987 .
[29] Jean-Michel Coron,et al. Harmonic maps with defects , 1986 .
[30] Gaspard Monge. , 1982, JAMA.
[31] A. Vershik. Some remarks on the infinite-dimensional problems of linear programming , 1970 .
[32] R. Rockafellar. Characterization of the subdifferentials of convex functions , 1966 .
[33] S. Afriat. The system of inequalities ars > Xr—Xs , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[34] John von Neumann,et al. 1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .
[35] Eranda C Ela,et al. Assignment Problems , 1964, Comput. J..