Computation- and Space-Efficient Implementation of SSA

The computational complexity of different steps of the basic SSA is discussed. It is shown that the use of the general-purpose "blackbox" routines (e.g. found in packages like LAPACK) leads to huge waste of time resources since the special Hankel structure of the trajectory matrix is not taken into account. We outline several state-of-the-art algorithms (for example, Lanczos-based truncated SVD) which can be modified to exploit the structure of the trajectory matrix. The key components here are hankel matrix-vector multiplication and hankelization operator. We show that both can be computed efficiently by the means of Fast Fourier Transform. The use of these methods yields the reduction of the worst-case computational complexity from O(N^3) to O(k N log(N)), where N is series length and k is the number of eigentriples desired.

[1]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[2]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[3]  Roland Badeau,et al.  Performance of ESPRIT for Estimating Mixtures of Complex Exponentials Modulated by Polynomials , 2007, IEEE Transactions on Signal Processing.

[4]  El-Hadi Djermoune,et al.  Perturbation Analysis of Subspace-Based Methods in Estimating a Damped Complex Exponential , 2009, IEEE Transactions on Signal Processing.

[5]  B. Parlett,et al.  Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .

[6]  Lothar Reichel,et al.  Augmented Implicitly Restarted Lanczos Bidiagonalization Methods , 2005, SIAM J. Sci. Comput..

[7]  D. O’Leary,et al.  A Bidiagonalization-Regularization Procedure for Large Scale Discretizations of Ill-Posed Problems , 1981 .

[8]  R. C. Whaley,et al.  Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005, Softw. Pract. Exp..

[9]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[10]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  William L. Briggs,et al.  Bluestein's FFT for arbitrary N on the hypercube , 1991, Parallel Comput..

[13]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[14]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[15]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..

[16]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[17]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[18]  Nina Golyandina,et al.  On the choice of parameters in Singular Spectrum Analysis and related subspace-based methods , 2010, 1005.4374.

[19]  Andrew L. Rukhin,et al.  Analysis of Time Series Structure SSA and Related Techniques , 2002, Technometrics.

[20]  H. Simon Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .

[21]  J. Hansen,et al.  Global temperature change , 2006, Proceedings of the National Academy of Sciences.

[22]  C. Folland,et al.  A NEW DAILY CENTRAL ENGLAND TEMPERATURE SERIES , 1992 .

[23]  J. Nagy,et al.  FFT-based preconditioners for Toeplitz-block least squares problems , 1993 .

[24]  J. Reid,et al.  Tracking the Progress of the Lanczos Algorithm for Large Symmetric Eigenproblems , 1981 .

[25]  Yimin Wei,et al.  A Lanczos bidiagonalization algorithm for Hankel matrices , 2009 .

[26]  Konstantin Usevich,et al.  2D-extension of Singular Spectrum Analysis: algorithm and elements of theory , 2010 .

[27]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[28]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[29]  Kesheng Wu,et al.  Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method , 2010, ACM Trans. Math. Softw..

[30]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..