Restricted permutations, continued fractions, and Chebyshev polynomials, Electron

[1]  V Lakshmibai,et al.  Criterion for smoothness of Schubert varieties in Sl(n)/B , 1990 .

[2]  Haakon Waadeland,et al.  Continued fractions with applications , 1994 .

[3]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[4]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[5]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[6]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[7]  John Noonan The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..

[8]  M. Bóna,et al.  The Number of Permutations with Exactlyr132-Subsequences IsP-Recursive in the Size! , 1997 .

[9]  Miklós Bóna,et al.  Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..

[10]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[11]  Doron Zeilberger,et al.  Permutation Patterns and Continued Fractions , 1999, Electron. J. Comb..

[12]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[13]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[14]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[15]  Mikl6s B6na Permutations with one or two 132-subsequences , 2003 .