Energy Conservation for the Weak Solutions of the Compressible Navier–Stokes Equations

In this paper, we prove the energy conservation for the weak solutions of the compressible Navier–Stokes equations for any time t > 0, under certain conditions. The results hold for the renormalized solutions of the equations with constant viscosities, as well as the weak solutions of the equations with degenerate viscosity. Our conditions do not depend on the dimensions. The energy may be conserved on the vacuum for the compressible Navier–Stokes equations with constant viscosities. Our results are the first ones on energy conservation for the weak solutions of the compressible Navier–Stokes equations.

[1]  Gregory L. Eyink,et al.  Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer , 1994 .

[2]  Z. Xin,et al.  Global Existence of Weak Solutions to the Barotropic Compressible Navier-Stokes Flows with Degenerate Viscosities , 2015, 1504.06826.

[3]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .

[4]  Didier Bresch,et al.  On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models , 2006 .

[5]  M. Shinbrot The Energy Equation for the Navier–Stokes System , 1974 .

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[8]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .

[9]  S. Kaniel,et al.  The initial value problem for the navier-stokes equations , 1966 .

[10]  D. Bresch,et al.  Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global κ-entropy solutions to the compressible Navier–Stokes systems with degenerate viscosities , 2015 .

[11]  A. Vasseur,et al.  Global weak solutions to the compressible quantum Navier–Stokes equation and its semi-classical limit , 2016, Journal de Mathématiques Pures et Appliquées.

[12]  Emil Wiedemann,et al.  Regularity and Energy Conservation for the Compressible Euler Equations , 2016, 1603.05051.

[13]  Camillo De Lellis,et al.  Dissipative Euler Flows with Onsager‐Critical Spatial Regularity , 2014, 1404.6915.

[14]  E Weinan,et al.  Onsager's conjecture on the energy conservation for solutions of Euler's equation , 1994 .

[15]  A new proof to the energy conservation for the Navier-Stokes equations , 2016, 1604.05697.

[16]  D. Bresch,et al.  On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems , 2003 .

[17]  Camillo De Lellis,et al.  Anomalous dissipation for 1/5-Hölder Euler flows , 2015 .

[18]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[19]  Alexis F. Vasseur,et al.  Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations , 2015, 1501.06803.

[20]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[21]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[22]  L. Evans,et al.  Partial Differential Equations , 1941 .

[23]  Antoine Mellet,et al.  On the Barotropic Compressible Navier–Stokes Equations , 2007 .

[24]  A. Cheskidov,et al.  Energy conservation and Onsager's conjecture for the Euler equations , 2007, 0704.0759.

[25]  R. Shvydkoy,et al.  The Energy Balance Relation for Weak solutions of the Density-Dependent Navier-Stokes Equations , 2016, 1602.08527.

[26]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .

[27]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.