Transform-based backprojection for volume reconstruction of large format electron microscope tilt series.

Alignment of the individual images of a tilt series is a critical step in obtaining high-quality electron microscope reconstructions. We report on general methods for producing good alignments, and utilizing the alignment data in subsequent reconstruction steps. Our alignment techniques utilize bundle adjustment. Bundle adjustment is the simultaneous calculation of the position of distinguished markers in the object space and the transforms of these markers to their positions in the observed images, along the bundle of particle trajectories along which the object is projected to each EM image. Bundle adjustment techniques are general enough to encompass the computation of linear, projective or nonlinear transforms for backprojection, and can compensate for curvilinear trajectories through the object, sample warping, and optical aberration. We will also report on new reconstruction codes and describe our results using these codes.

[1]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[2]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[3]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[4]  M H Ellisman,et al.  Multiport-readout frame-transfer 5 megapixel CCD imaging system for TEM applications. , 2000, Ultramicroscopy.

[5]  E. Ruska,et al.  The development of the electron microscope and of electron microscopy , 1987 .

[6]  M H Ellisman,et al.  Digital imaging in transmission electron microscopy , 2000, Journal of microscopy.

[7]  K. Herrmann,et al.  Development and performance of a fast fibre-plate coupled CCD camera at medium energy and image processing system for electron holography , 1996 .

[8]  Ge Wang,et al.  Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve. , 2004, Medical physics.

[9]  J. Frank,et al.  Double-tilt electron tomography. , 1995, Ultramicroscopy.

[10]  Jian-Min Zuo,et al.  Large dynamic range, parallel detection system for electron diffraction and imaging , 1988 .

[11]  K. Hama,et al.  Method of extracting three-dimensional information from HVTEM stereo images of biological materials. , 1987, Journal of electron microscopy.

[12]  Gabor T. Herman,et al.  Basic methods of tomography and inverse problems , 1987 .

[13]  V. G. Romanov,et al.  Integral Geometry and Inverse Problems for Hyperbolic Equations , 1974 .

[14]  J. Frank,et al.  Representation of three‐dimensionally reconstructed objects in electron microscopy by surfaces of equal density , 1984, Journal of microscopy.

[15]  Paul Ahlquist,et al.  Flock House Virus RNA Replicates on Outer Mitochondrial Membranes in Drosophila Cells , 2001, Journal of Virology.

[16]  A. W. Agar,et al.  Principles and Practice of Electron Microscope Operation , 1974 .

[17]  J Heikkonen,et al.  Automatic alignment of transmission electron microscope tilt series without fiducial markers. , 2001, Journal of structural biology.

[18]  K.-H. Herrmann,et al.  Low-energy electron image converters of high resolution using low-scan CCD sensor , 1995 .

[19]  J. N. Chapman,et al.  Electron detection in the analytical electron microscope , 1989 .

[20]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[21]  Mark H. Ellisman,et al.  Serial Section Electron Tomography: A Method for Three-Dimensional Reconstruction of Large Structures , 1994, NeuroImage.

[22]  Rolf Kötter,et al.  Neuroscience databases : a practical guide , 2003 .

[23]  K. Downing,et al.  Performance of a 2k CCD camera designed for electron crystallography at 400 kV. , 1999, Ultramicroscopy.

[24]  Marie-Odile Berger,et al.  3D Surface Reconstruction Using Occluding Contours , 2004, International Journal of Computer Vision.

[25]  Dmitrii Aleksandrovich Popov,et al.  The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions , 2001 .

[26]  Maarten V. de Hoop,et al.  Microlocal Analysis of Seismic Inverse Scattering , 2003 .

[27]  R. Aikens,et al.  Chapter 16 Solid-State Imagers for Microscopy , 1988 .

[28]  David A. Forsyth,et al.  Recognizing algebraic surfaces from their outlines , 1993, Vision.

[29]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[30]  J. N. Chapman,et al.  A CCD-based image recording system for the CTEM , 1982 .

[31]  M H Ellisman,et al.  High-sensitivity lens-coupled slow-scan CCD camera for transmission electron microscopy. , 1993, Ultramicroscopy.

[32]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[33]  Alexander Katsevich Microlocal Analysis of an FBP Algorithm for Truncated Spiral Cone Beam Data , 2002 .

[34]  K. Tsuno,et al.  Minimisation of radial and spiral distortion in electron microscopy through the use of a triple pole-piece lens , 1981 .

[35]  Anders Heyden,et al.  Euclidean Reconstruction from almost Uncalibrated Cameras , 1997 .

[36]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[37]  H. Tuy AN INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION* , 1983 .

[38]  Gregory Beylkin,et al.  Inversion Of The Generalized Radon Transform , 1983, Other Conferences.

[39]  D. Krahl,et al.  Performance of a low-noise CCD camera adapted to a transmission electron microscope , 1992 .

[40]  J Heikkonen,et al.  Multiphase method for automatic alignment of transmission electron microscope images using markers. , 2001, Journal of structural biology.

[41]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .

[42]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[43]  J Frank,et al.  Flopping polypeptide chains and Suleika's subtle imperfections: analysis of variations in the electron micrograph of a purple membrane crystal. , 1993, Ultramicroscopy.

[44]  Pawel A Penczek,et al.  Estimating alignment errors in sets of 2-D images. , 2005, Journal of structural biology.

[45]  Maryann E Martone,et al.  Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. , 2004, Journal of structural biology.

[46]  Joachim Frank,et al.  Electron Tomography , 1992, Springer US.

[47]  Eric Todd Quinto,et al.  Mathematical Methods in Tomography , 2006 .

[48]  D. Mastronarde Dual-axis tomography: an approach with alignment methods that preserve resolution. , 1997, Journal of structural biology.

[49]  G A Perkins,et al.  Electron tomography of large, multicomponent biological structures. , 1997, Journal of structural biology.

[50]  P. Grangeat Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .

[51]  S J Young,et al.  Conditions for electron tomographic data acquisition. , 1995, Journal of electron microscopy.

[52]  David J. Miller,et al.  Engineered Retargeting of Viral RNA Replication Complexes to an Alternative Intracellular Membrane , 2003, Journal of Virology.

[53]  M. Defrise A factorization method for the 3D X-ray transform , 1995 .

[54]  Bertram Ludäscher,et al.  A cell-centered database for electron tomographic data. , 2002, Journal of structural biology.