Programmable delivery of DNA through a nanopipet.

We report the pulsed delivery of single-stranded DNA molecules through a nanopipet. The conical geometry of the pipet leads to a localized electric field, since all of the potential drop occurs in the tip region. Pulsatile delivery of DNA molecules can be achieved in an experimentally simple way with high precision by controlling the applied voltage. Single-molecule detection and fluorescence correlation spectroscopy in the nanopipet enable us to determine the number of molecules delivered. Anomalous slow diffusion of the DNA molecules in the pipet has also been observed. This nanopumping technique may have potential applications in local drug delivery and nanofabrication of biomolecules on surfaces in aqueous environments.