Optical antennas and plasmonics

Optical antenna is a nanoscale miniaturisation of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. A strong electric field is shown to exist within a highly localised region of optical antennas such as antenna feed gap or apertures. We describe physical properties of field enhancement in apertures (circular and rectangular holes) and gaps (infinite slit and feed gap), as well as experimental techniques measuring enhanced electric vector field. We discuss the analogies and differences between conventional and optical antennas with a projection for future developments.

[1]  Hiroyuki Yokoyama,et al.  Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture , 2006 .

[2]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[3]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[4]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[5]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[6]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[7]  Jkm Jozef Jansen,et al.  The scalar feed , 1969 .

[8]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[9]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[10]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[11]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[12]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[13]  J. W. Lee,et al.  Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. , 2007, Optics express.

[14]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[15]  T. Taminiau,et al.  A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements , 2007, IEEE Transactions on Antennas and Propagation.

[16]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[17]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[18]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[19]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[20]  M Mansuripur,et al.  Transmission of light through small elliptical apertures. , 2004, Optics express.

[21]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[22]  Aurélien Bruyant,et al.  Gain, detuning, and radiation patterns of nanoparticle optical antennas , 2008 .

[23]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[24]  Byoungho Lee,et al.  Vector field microscopic imaging of light , 2007 .

[25]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[27]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[28]  M. Garcia-Parajo,et al.  Optical antennas focus in on biology , 2008 .

[29]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[30]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[31]  Thierry Laroche,et al.  Near-field optical properties of single plasmonic nanowires , 2006 .

[32]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[33]  B. Sepúlveda,et al.  Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films. , 2008, Optics express.

[34]  X. Zhang,et al.  Free‐space electro‐optic sampling of terahertz beams , 1995 .

[35]  Borja Sepúlveda,et al.  Nanohole plasmons in optically thin gold films , 2007 .

[36]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[37]  S. Bozhevolnyi,et al.  Slow-plasmon resonant nanostructures: Scattering and field enhancements , 2007 .

[38]  F. Keilmann,et al.  Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe , 2002 .

[39]  Andrey L. Stepanov,et al.  Optical properties of metal nanoparticles , 2010, International Conference on Coherent and Nonlinear Optics.

[40]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[41]  G. Goubau Surface Waves and Their Application to Transmission Lines , 1950 .

[42]  Esteban Moreno,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[43]  Michael Treacy,et al.  Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings , 2002 .

[44]  P. Burke,et al.  Quantitative theory of nanowire and nanotube antenna performance , 2004, IEEE Transactions on Nanotechnology.

[45]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[46]  T. Grosjean,et al.  Photopolymers as vectorial sensors of the electric field. , 2006, Optics express.

[47]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[48]  G. Hanson,et al.  On the Applicability of the Surface Impedance Integral Equation for Optical and Near Infrared Copper Dipole Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[49]  Xianfan Xu,et al.  High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging , 2007 .

[50]  T. Ebbesen,et al.  Analysis of the transmission process through single apertures surrounded by periodic corrugations. , 2004, Optics express.

[51]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[52]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[53]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[54]  Lukas Novotny,et al.  Nanoplasmonic enhancement of single-molecule fluorescence , 2007 .

[55]  Harald Giessen,et al.  Optical resonances of bowtie slot antennas and their geometry and material dependence. , 2008, Optics express.

[56]  Xianfan Xu,et al.  Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture , 2006 .

[57]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[58]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[59]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[60]  Q-Han Park,et al.  Coupling of surface plasmon polaritons and light in metallic nanoslits. , 2005, Physical review letters.

[61]  J. Sáenz,et al.  Electromagnetic surface modes in structured perfect-conductor surfaces. , 2005, Physical review letters.

[62]  H. Yagi,et al.  Beam transmission of ultra short waves , 1928, Proceedings of the IEEE.

[63]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[64]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[65]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[66]  Feng Gao,et al.  Plasmonic antenna array at optical frequency made by nanoapertures , 2008 .

[67]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[68]  Vladimir M. Shalaev,et al.  Enhanced localized fluorescence in plasmonic nanoantennae , 2008 .

[69]  T. J. Watson,et al.  Apertureless near-field optical microscope , 1999 .

[70]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[71]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[72]  R. J. Moerland,et al.  Near-field driving of a optical monopole antenna , 2007 .

[73]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[74]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[75]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[76]  P. Lalanne,et al.  Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. , 2002, Physical review letters.

[77]  P. Barber Absorption and scattering of light by small particles , 1984 .

[78]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[79]  Satoshi Kawata,et al.  Scanning probe optical microscopy using a metallic probe tip , 1995 .

[80]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[81]  F. J. García de abajo,et al.  Light transmission through a single cylindrical hole in a metallic film. , 2002, Optics express.

[82]  Nanfang Yu,et al.  Plasmonic Quantum Cascade Laser Antenna , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[83]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[84]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[85]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[86]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[87]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[88]  M. Meier,et al.  Enhanced fields on large metal particles: dynamic depolarization. , 1983, Optics letters.

[89]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[90]  D. Grischkowsky,et al.  THz Sommerfeld wave propagation on a single metal wire , 2005 .

[91]  Q-Han Park,et al.  Shape resonance omni-directional terahertz filters with near-unity transmittance. , 2006, Optics express.

[92]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[93]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[94]  Dieter W. Pohl,et al.  Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy , 2007 .

[95]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[96]  Lambertus Hesselink,et al.  Low-loss subwavelength metal C-aperture waveguide. , 2006, Optics letters.

[97]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[98]  Hiromi Okamoto,et al.  Near-field optical imaging of plasmon modes in gold nanorods. , 2005, The Journal of chemical physics.

[99]  Lambertus Hesselink,et al.  Ultrahigh light transmission through a C-shaped nanoaperture. , 2003, Optics letters.

[100]  G. Gallot,et al.  Electro-optic detection of terahertz radiation , 1999 .

[101]  J. W. Lee,et al.  Near field imaging of terahertz focusing onto rectangular apertures. , 2008, Optics express.

[102]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[103]  Mikael Käll,et al.  Optical Spectroscopy of Nanometric Holes in Thin Gold Films , 2004 .

[104]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[105]  E. Popov,et al.  Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[106]  四方 潤一,et al.  Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture , 2006 .

[107]  Ji-Hun Kang,et al.  Local capacitor model for plasmonic electric field enhancement , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[108]  H. Lezec,et al.  Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. , 2003, Physical review letters.

[109]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[110]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[111]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[112]  Borja Sepúlveda,et al.  Optical antennas based on coupled nanoholes in thin metal films , 2007 .

[113]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[114]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[115]  Daniel R. Grischkowsky,et al.  Characterization of an optoelectronic terahertz beam system , 1990 .

[116]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[117]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[118]  R. Schouten,et al.  Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter , 2002 .

[119]  Lambertus Hesselink,et al.  Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures , 2004 .

[120]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[121]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .