TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties

In this work, nanorods of CdS, CdSe, and CdSeS are deposited by chemical vapor deposition on TiO2 nanorod arrays, and the photoelectrochemical (PEC) perform- ance of the heterostructures is studied comprehensively. It is found that nanorods-shaped CdS are superior to nanoparticles as the photosensitizer. The difference in the photosensitizing effect to TiO2 nanorods among CdS, CdSe, and CdSeS alloy nanorods is studied using optical and electrochemical techniques. The energy levels of these heterostructure photoelectrodes are constructed based on X-ray photoelectron spectroscopy (XPS) and diffused reflectance spectra measure- ments. The current−time profile with chopped light condition, in combination with time-resolved photoluminescence spectroscopy, reveals that the TiO2/CdS electrode has the lowest carrier recombination rate, highest electron injection efficiency, and highest chemical stability. Nevertheless, in terms of the overall PEC performance (photocurrent level and stability), we propose the TiO2/CdSSe electrode is most favorable.

[1]  Hui Zhao,et al.  Photoelectrochemical Performance of Multiple Semiconductors (CdS/CdSe/ZnS) Cosensitized TiO2 Photoelectrodes , 2012 .

[2]  P. Kamat Book Review of Organic Nanostructures , 2008 .

[3]  Yuh‐Lang Lee,et al.  Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells , 2007 .

[4]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[5]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[6]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[7]  Y. Tao,et al.  Growth of CdS nanowires by physical vapor deposition , 2002 .

[8]  Ahmad Umar,et al.  Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism : Structural and optical properties , 2005 .

[9]  S. De,et al.  Optical Properties of the Type-II Core−Shell TiO2@CdS Nanorods for Photovoltaic Applications , 2009 .

[10]  P. Kamat,et al.  Understanding the role of the sulfide redox couple (S2-/S(n)2-) in quantum dot-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[11]  Michael Grätzel,et al.  Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. , 2009, Nano letters.

[12]  Yu-Ming Chang,et al.  Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO2 Photoelectrode , 2012 .

[13]  Hua Wang,et al.  CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes , 2010 .

[14]  G. Shen,et al.  CdS Multipod-Based Structures through a Thermal Evaporation Process , 2005 .

[15]  Illan J. Kramer,et al.  Solar cells using quantum funnels. , 2011, Nano letters.

[16]  U. Gösele,et al.  On the growth mechanism and optical properties of ZnO multi-layer nanosheets , 2004 .

[17]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[18]  U. Banin,et al.  Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. , 2012, Nano letters.

[19]  Yu-Ming Chang,et al.  Energy level alignment, electron injection, and charge recombination characteristics in CdS/CdSe cosensitized TiO2 photoelectrode , 2011 .

[20]  Juan Bisquert,et al.  CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment , 2009 .

[21]  F. Fabregat‐Santiago,et al.  Recombination in quantum dot sensitized solar cells. , 2009, Accounts of chemical research.

[22]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[23]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[24]  Tao Chen,et al.  Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , 2007 .

[25]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[26]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[27]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[28]  D. Cahen,et al.  Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells , 2006 .

[29]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[30]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[31]  Yuh‐Lang Lee,et al.  CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell† , 2010 .

[32]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[33]  J. Bisquert,et al.  Modeling high-efficiency quantum dot sensitized solar cells. , 2010, ACS nano.

[34]  Lide Zhang,et al.  Fabrication of Single-Crystalline Semiconductor CdS Nanobelts by Vapor Transport , 2004 .

[35]  Tae Geun Kim,et al.  Growth of CdS Nanorod-Coated TiO2 Nanowires on Conductive Glass for Photovoltaic Applications , 2009 .

[36]  G. Jung,et al.  Composition-tuned ZnO--CdSSe core--shell nanowire arrays. , 2010, ACS nano.

[37]  Jay P. Giblin,et al.  Nanostructure Absorption: A Comparative Study of Nanowire and Colloidal Quantum Dot Absorption Cross Sections , 2010 .

[38]  Prajna P. Das,et al.  Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS , 2008 .

[39]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[40]  H. Saito,et al.  Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluoride , 1978 .

[41]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.