Bridges between Deterministic and Probabilistic Models for Binary Data

For the analysis of binary data, various deterministic models have been proposed, which are generally simpler to fit and easier to understand than probabilistic models. We claim that corresponding to any deterministic model is an implicit stochastic model in which the deterministic model fits imperfectly, with errors occurring at random. In the context of binary data, we consider two error models in the first model, all predictions are equally likely to be in error; in the second model, the probability of error depends on the model prediction. We show how to fit these models using a stochastic modification of deterministic optimization schemes. The advantages of fitting the stochastic models explicitly (rather than implicitly, by simply fitting a deterministic model and accepting the occurrence of errors) include quantification of uncertainty in the deterministic model's parameter estimates, better estimation of the true model error rate, and the ability to check the fit of the model nontrivially. We illustrate with a simple theoretical example of item response data and with empirical examples from archaeology and the psychology of choice.

[1]  Iven Van Mechelen,et al.  Models for ordinal hierarchical classes analysis , 2001 .

[2]  Iven Van Mechelen,et al.  Bayesian probabilistic extensions of a deterministic classification model , 2000, Comput. Stat..

[3]  Jeroen Poblome,et al.  Sagalassos Red Slip Ware: Typology and Chronology , 1998 .

[4]  J. Poblome,et al.  The clay raw materials of Sagalassos Red Slip Ware. A chronological Evaluation , 1997 .

[5]  Marc Waelkens,et al.  Report on the survey and excavation campaigns of 1996 and 1997 , 1997 .

[6]  Jeroen Poblome,et al.  Production and Distribution of Sagalassos Red Slip Ware. A Dialogue with the Roman Economy , 1996 .

[7]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[8]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[9]  D. Andrich Hyperbolic Cosine Latent Trait Models for Unfolding Direct Responses and Pairwise Preferences , 1995 .

[10]  I. W. Molenaar,et al.  Rasch models: foundations, recent developments and applications , 1995 .

[11]  I. Vanmechelen,et al.  A Latent Criteria Model for Choice Data , 1994 .

[12]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[13]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[14]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[15]  L. Hubert,et al.  Combinatorial Data Analysis , 1992 .

[16]  Herbert Hoijtink,et al.  A latent trait model for dichotomous choice data , 1990 .

[17]  M. Waelkens,et al.  Cremna and Sagalassus 1987 , 1988, Anatolian Studies.

[18]  D. A. Preece,et al.  Good statistical practice , 1987 .

[19]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[20]  R. Hofmann On Testing a Guttman Scale for Significance , 1979 .

[21]  Leo A. Goodman,et al.  A New Model for Scaling Response Patterns: An Application of the Quasi-Independence Concept , 1975 .

[22]  Sakti P. Ghosh File organization , 1972, Commun. ACM.

[23]  Academia Republicii Socialiste România,et al.  Mathematics in the archaeological and historical sciences : proceedings of the Anglo-Romanian Conference, Mamaia, 1970 , 1973 .

[24]  Charles H. Proctor,et al.  A probabilistic formulation and statistical analysis of guttman scaling , 1970 .

[25]  Peter C. C. Wang On incidence matrices , 1970 .

[26]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[27]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[28]  C. Coombs A theory of data. , 1965, Psychological review.

[29]  L. A. Goodman Simple statistical methods for scalogram analysis , 1959 .

[30]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[31]  S. Stouffer,et al.  Measurement and Prediction , 1954 .

[32]  Anatolian Studies , 1924, The Classical Review.