3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach

We present a finite-element time-domain FETD approach for the simulation of 3D electromagnetic EM diffusion phenomena. The finite-element algorithm efficiently simulates transient electric fields and the time derivatives of magneticfields in general anisotropic earth media excited by multiple arbitrarily configured electric dipoles with various signal waveforms. To compute transient electromagnetic fields,theelectricfielddiffusionequationistransformedinto asystemofdifferentialequationsviaGalerkin’smethodwith homogeneous Dirichlet boundary conditions. To ensure numerical stability and an efficient time step, the system of the differential equations is discretized in time using an implicit backward Euler scheme. The resultant FETD matrix-vector equation is solved using a sparse direct solver along with a fill-inreducedorderingtechnique.Whenadvancingthesolution in time, the FETD algorithm adjusts the time step by examining whether or not the current step size can be doubled without unacceptably affecting the accuracy of the solution. To simulate a step-off source waveform, the 3D FETD algorithm also incorporates a 3D finite-element direct current FEDCalgorithmthatsolvesPoisson’sequationusingasecondarypotentialmethodforageneralanisotropicearthmodel. Examples of controlled-source FETD simulations are compared with analytic and/or 3D finite-difference time-domain solutions and are used to confirm the accuracy and efficiencyofthe3DFETDalgorithm.

[1]  Simon Spitz,et al.  A finite-element solution for the transient electromagnetic response of an arbitrary two-dimensional resistivity distribution , 1986 .

[2]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[3]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[4]  Yuguo Li,et al.  Three‐dimensional DC resistivity forward modelling using finite elements in comparison with finite‐difference solutions , 2002 .

[5]  Gregory A. Newman,et al.  Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .

[6]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[7]  Andreas C. Cangellaris,et al.  Point-matched time domain finite element methods for electromagnetic radiation and scattering , 1987 .

[8]  Mark S. Gockenbach Partial Differential Equations , 2010 .

[9]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[10]  Peter N. Shive,et al.  Singularity removal: A refinement of resistivity modeling techniques , 1989 .

[11]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[12]  D. White,et al.  Verification of high-order mixed finite-element solution of transient magnetic diffusion problems , 2006, IEEE Transactions on Magnetics.

[13]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[14]  J. Shadid,et al.  Three‐dimensional wideband electromagnetic modeling on massively parallel computers , 1996 .

[15]  K. Preis,et al.  On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents , 1989 .

[16]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[17]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[18]  H. Whitney Geometric Integration Theory , 1957 .

[19]  Allen Taflove,et al.  Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems , 1980, IEEE Transactions on Electromagnetic Compatibility.

[20]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[21]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[22]  U. Navsariwala,et al.  An unconditionally stable finite element time-domain solution of the vector wave equation , 1995 .

[23]  Klaus Spitzer,et al.  Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy , 2005 .

[24]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[25]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[26]  R. N. Edwards,et al.  Transient marine electromagnetics: the 2.5-D forward problem , 1993 .

[27]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[28]  Michael Commer,et al.  A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources , 2004 .

[29]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[30]  Jin-Fa Lee,et al.  A fast vector-potential method using tangentially continuous vector finite elements , 1998 .

[31]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[32]  Yu Zhu,et al.  Multigrid Finite Element Methods for Electromagnetic Field Modeling , 2006 .

[33]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[34]  A. Dey,et al.  Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .

[35]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[36]  Martin D. Müller,et al.  Understanding LOTEM data from mountainous terrain , 2000 .

[37]  O. Ernst,et al.  Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection , 2008 .

[38]  Chester J. Weiss,et al.  Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .