The robustness of seismic attenuation measurements using fixed- and variable-window time-frequency transforms

Frequency-based methods for measuring seismic attenuation are used commonly in exploration geophysics. To measure the spectrum of a nonstationary seismic signal, different methods are available, including transforms with time windows that are either fixed or systematically varying with the frequency being analyzed. We compare four time-frequency transforms and show that the choice of a fixed- or variable-window transform affects the robustness and accuracy of the resulting attenuation measurements. For fixed-window transforms, we use the short-time Fourier transform and Gabor transform. The S-transform and continuous wavelet transform are analyzed as the variable-length transforms. First we conduct a synthetic transmission experiment, and compare the frequency-dependent scattering attenuation to the theoretically predicted values. From this procedure, we find that variable-window transforms reduce the uncertainty and biasof the resulting attenuation estimate, specifically at the upper and lower ends of th...

[1]  N. A. Anstey,et al.  Reflections on AMPLITUDES , 1971 .

[2]  Yanghua Wang,et al.  Seismic time-frequency spectral decomposition by matching pursuit , 2007 .

[3]  R. Bracewell The Fourier Transform and Its Applications , 1966 .

[4]  Maliha S. Nash,et al.  Practical Time-Frequency Analysis, Gabor and Wavelet Transforms With an Implementation in S , 2002, Technometrics.

[5]  John P. Castagna,et al.  Comparison of spectral decomposition methods , 2006 .

[6]  J. Taylor An Introduction to Error Analysis , 1982 .

[7]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[8]  M. N. Toksoz,et al.  Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms , 1979 .

[9]  Mirko van der Baan,et al.  Acoustic wave propagation in one-dimensional random media: the wave localization approach , 2001 .

[10]  Longyi Shao,et al.  Measures of scale based on the wavelet scalogram with applications to seismic attenuation , 2006 .

[11]  M. Schoenberger,et al.  Apparent attenuation due to intrabed multiples; II , 1974 .

[12]  M. Chapman,et al.  Modelling and analysis of attenuation anisotropy in multi‐azimuth VSP data from the Clair field , 2007 .

[13]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[14]  S. A. Shapiro,et al.  The O’Doherty‐Anstey formula and localization of seismic waves , 1993 .

[15]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[16]  Lalu Mansinha,et al.  Localization of the complex spectrum: the S transform , 1996, IEEE Trans. Signal Process..

[17]  Roger A. Clark,et al.  Estimation of Q from surface seismic reflection data , 1998 .

[18]  T. W. Spencer,et al.  Seismic Wave Attenuation in Nonresolvable Cyclic Stratification , 1977 .

[19]  Michael E. Jones,et al.  White Rose seismic with well data constraints A case history , 2007 .

[20]  B. Hustedt,et al.  Source/receiver array directivity effects on marine seismic attenuation measurements , 1999 .

[21]  M. S. King,et al.  The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks , 1997 .

[22]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[23]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis, Volume 9: Gabor and Wavelet Transforms, with an Implementation in S , 1998 .

[24]  B. Ursin,et al.  Comparison of seismic attenuation models using zero-offset vertical seismic profiling (VSP) data , 2005 .

[25]  J. R. Sonnad,et al.  Seismic Q-Stratigraphy or dissipation , 1982 .

[26]  Attenuation Estimation With Continuous Wavelet Transforms. , 2006 .

[27]  Amos Nur,et al.  Seismic attenuation: Effects of pore fluids and frictional-sliding , 1982 .

[28]  Amos Nur,et al.  Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms , 1993 .

[29]  Matt Hall,et al.  Resolution and uncertainty in spectral decomposition , 2006 .

[30]  Michel Dietrich,et al.  Modeling of marine seismic profiles in the t-x and τ-p domains , 1988 .

[31]  R. Clark,et al.  Attenuation Measurements from Surface Seismic Data - Azimuthal Variation and Time-Lapse Case Studies , 2001 .

[32]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[33]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[34]  P. Anno,et al.  Spectral decomposition of seismic data with continuous-wavelet transform , 2005 .

[35]  P. S. Hauge,et al.  Measurements of attenuation from vertical seismic profiles , 1981 .

[36]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[37]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis , 1998 .

[38]  D. Okaya,et al.  Frequency‐time decomposition of seismic data using wavelet‐based methods , 1995 .

[39]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[40]  R. Tonn,et al.  THE DETERMINATION OF THE SEISMIC QUALITY FACTOR Q FROM VSP DATA: A COMPARISON OF DIFFERENT COMPUTATIONAL METHODS1 , 1991 .

[41]  M. van der Baan,et al.  Stratigraphic filtering and source penetration depth , 2005 .

[42]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.