A tumor growth model of Hele-Shaw type as a gradient flow

In this paper, we characterize a degenerate PDE as the gradient flow in the space of nonnegative measures endowed with an optimal transport-growth metric. The PDE of concern, of Hele-Shaw type, was introduced by Perthame et. al. as a mechanical model for tumor growth and the metric was introduced recently in several articles as the analogue of the Wasserstein metric for nonnegative measures. We show existence of solutions using minimizing movements and show uniqueness of solutions on convex domains by proving the Evolutional Variational Inequality. Our analysis does not require any regularity assumption on the initial condition. We also derive a numerical scheme based on the discretization of the gradient flow and the idea of entropic regularization. We assess the convergence of the scheme on explicit solutions. In doing this analysis, we prove several new properties of the optimal transport-growth metric, which generally have a known counterpart for the Wasserstein metric.

[1]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[2]  Augusto Visintin,et al.  Strong convergence results related to strict convexity , 1984 .

[3]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[4]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[5]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[6]  Lorenzo Giacomelli,et al.  Variatonal formulation for the lubrication approximation of the Hele-Shaw flow , 2001 .

[7]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[8]  L. Ambrosio,et al.  Chapter 1 – Gradient Flows of Probability Measures , 2007 .

[9]  Sara Daneri,et al.  Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..

[10]  P. Koskela,et al.  Sobolev embeddings, extensions and measure density condition , 2008 .

[11]  Nicola Gigli,et al.  A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions , 2010 .

[12]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[13]  Christian L'eonard,et al.  O C ] 1 1 N ov 2 01 0 FROM THE SCHRÖDINGER PROBLEM TO THE MONGE-KANTOROVICH , 2010 .

[14]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[15]  Bas Lemmens,et al.  Nonlinear Perron-Frobenius Theory , 2012 .

[16]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[17]  Matthias Liero,et al.  Gradient structures and geodesic convexity for reaction–diffusion systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  B. Perthame,et al.  The Hele–Shaw Asymptotics for Mechanical Models of Tumor Growth , 2013, Archive for Rational Mechanics and Analysis.

[19]  G. Peyré,et al.  Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015 .

[20]  Inwon C. Kim,et al.  Porous medium equation to Hele-Shaw flow with general initial density , 2015, 1509.06287.

[21]  Gabriel Peyré,et al.  Entropic Approximation of Wasserstein Gradient Flows , 2015, SIAM J. Imaging Sci..

[22]  B. Perthame,et al.  A HELE-SHAW problem for tumor growth , 2015, 1512.06995.

[23]  S. Kondratyev,et al.  A new optimal transport distance on the space of finite Radon measures , 2015, Advances in Differential Equations.

[24]  Giuseppe Savaré,et al.  Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures , 2015, 1508.07941.

[25]  Simone Di Marino,et al.  Uniqueness issues for evolution equations with density constraints , 2015, Mathematical Models and Methods in Applied Sciences.

[26]  F. Santambrogio,et al.  BV Estimates in Optimal Transportation and Applications , 2015, 1503.06389.

[27]  B. Maury,et al.  Pressureless Euler equations with maximal density constraint : a time-splitting scheme , 2015 .

[28]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[29]  Alexander Mielke,et al.  Optimal Transport in Competition with Reaction: The Hellinger-Kantorovich Distance and Geodesic Curves , 2015, SIAM J. Math. Anal..

[30]  Dmitry Vorotnikov,et al.  A fitness-driven cross-diffusion system from polulation dynamics as a gradient flow , 2016, 1603.06431.

[31]  Andrea L. Bertozzi,et al.  A blob method for the aggregation equation , 2014, Math. Comput..

[32]  Anthony Preux Transport optimal et équations des gaz sans pression avec contrainte de densité maximale , 2016 .

[33]  F. Santambrogio {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.

[34]  Jean-David Benamou,et al.  An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .

[35]  Gabriel Peyré,et al.  Convergence of Entropic Schemes for Optimal Transport and Gradient Flows , 2015, SIAM J. Math. Anal..

[36]  Lénaïc Chizat,et al.  Scaling Algorithms for Unbalanced Transport Problems , 2016, 1607.05816.

[37]  Thomas O. Gallouët,et al.  A JKO Splitting Scheme for Kantorovich-Fisher-Rao Gradient Flows , 2016, SIAM J. Math. Anal..

[38]  François-Xavier Vialard,et al.  Scaling algorithms for unbalanced optimal transport problems , 2017, Math. Comput..

[39]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[40]  G. Peyré,et al.  Unbalanced optimal transport: Dynamic and Kantorovich formulations , 2015, Journal of Functional Analysis.

[41]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[42]  Maxime Laborde,et al.  An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[43]  Inwon C. Kim,et al.  Singular limit of the porous medium equation with a drift , 2017, Advances in Mathematics.