Spatiotemporal Image Fusion in Remote Sensing

In this paper, we discuss spatiotemporal data fusion methods in remote sensing. These methods fuse temporally sparse fine-resolution images with temporally dense coarse-resolution images. This review reveals that existing spatiotemporal data fusion methods are mainly dedicated to blending optical images. There is a limited number of studies focusing on fusing microwave data, or on fusing microwave and optical images in order to address the problem of gaps in the optical data caused by the presence of clouds. Therefore, future efforts are required to develop spatiotemporal data fusion methods flexible enough to accomplish different data fusion tasks under different environmental conditions and using different sensors data as input. The review shows that additional investigations are required to account for temporal changes occurring during the observation period when predicting spectral reflectance values at a fine scale in space and time. More sophisticated machine learning methods such as convolutional neural network (CNN) represent a promising solution for spatiotemporal fusion, especially due to their capability to fuse images with different spectral values.

[1]  Martha C. Anderson,et al.  Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship , 2003 .

[2]  D. Amarsaikhan,et al.  Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification , 2010 .

[3]  Mario Chica-Olmo,et al.  Downscaling cokriging for image sharpening , 2006 .

[4]  T. Ohta,et al.  Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and Landsat , 2017 .

[5]  Feng Gao,et al.  A Hybrid Color Mapping Approach to Fusing MODIS and Landsat Images for Forward Prediction , 2018, Remote. Sens..

[6]  Deyu Meng,et al.  Spatial and Temporal Image Fusion via Regularized Spatial Unmixing , 2015, IEEE Geoscience and Remote Sensing Letters.

[7]  Liangpei Zhang,et al.  Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network , 2017, IEEE Geoscience and Remote Sensing Letters.

[8]  J. Boardman,et al.  Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm , 1992 .

[9]  G. King,et al.  What to Do about Missing Values in Time‐Series Cross‐Section Data , 2010 .

[10]  Jinying Zhong,et al.  Remote Sensing Image Fusion with Convolutional Neural Network , 2016 .

[11]  Michael A. Lefsky,et al.  A flexible spatiotemporal method for fusing satellite images with different resolutions , 2016 .

[12]  Jixian Zhang Multi-source remote sensing data fusion: status and trends , 2010 .

[13]  Mingquan Wu,et al.  High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model , 2015, Comput. Electron. Agric..

[14]  Ji Zhou,et al.  Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats , 2013 .

[15]  Huihui Song,et al.  A robust adaptive spatial and temporal image fusion model for complex land surface changes , 2018 .

[16]  André Twele,et al.  Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—a case study from Central Sulawesi, Indonesia , 2009 .

[17]  Luis Guanter,et al.  Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Yingbao Yang,et al.  Applicability of Downscaling Land Surface Temperature by Using Normalized Difference Sand Index , 2018, Scientific Reports.

[19]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[20]  Shaofeng Jia,et al.  A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China , 2011 .

[21]  G. Foody,et al.  Slavery from Space: Demonstrating the role for satellite remote sensing to inform evidence-based action related to UN SDG number 8 , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[22]  Donald G. Leckie,et al.  Advances in remote sensing technologies for forest surveys and management , 1990 .

[23]  Y. Kerr,et al.  Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images , 2010 .

[24]  J. L. van Genderen,et al.  Image fusion : issues, techniques and applications , 1994 .

[25]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[26]  S. Baronti,et al.  Multispectral and panchromatic data fusion assessment without reference , 2008 .

[27]  J. Cihlar,et al.  Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection , 2002 .

[28]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[29]  Marvin E. Bauer,et al.  Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[31]  Lin Yan,et al.  An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery , 2016, Remote. Sens..

[32]  Chiman Kwan,et al.  Mastcam image enhancement using estimated point spread functions , 2017, 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON).

[33]  Peter M. Atkinson,et al.  Fusion of Landsat 8 OLI and Sentinel-2 MSI Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Bo Huang,et al.  A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis , 2017, Remote. Sens..

[35]  D. Butler Many eyes on Earth , 2014, Nature.

[36]  Mingquan Wu,et al.  Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model , 2012 .

[37]  Jing Wang,et al.  A spatiotemporal satellite image fusion model with autoregressive error correction (AREC) , 2018 .

[38]  Bin Chen,et al.  Comparison of Spatiotemporal Fusion Models: A Review , 2015, Remote. Sens..

[39]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[40]  Martha C. Anderson,et al.  Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery , 2017 .

[41]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[42]  Xin Pan,et al.  Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression , 2017, Remote. Sens..

[43]  P. Robinson,et al.  Estimation of Time Series Models in the Presence of Missing Data , 1981 .

[44]  Trevor Platt,et al.  Impact of missing data on the estimation of ecological indicators from satellite ocean-colour time-series , 2014 .

[45]  M. Herold,et al.  Fusing Landsat and SAR time series to detect deforestation in the tropics , 2015 .

[46]  Jianya Gong,et al.  Multivariate statistical analysis of measures for assessing the quality of image fusion , 2010 .

[47]  Du-Yih Tsai,et al.  Information Entropy Measure for Evaluation of Image Quality , 2008, Journal of Digital Imaging.

[48]  Terri S. Hogue,et al.  Improving Spatial Soil Moisture Representation Through Integration of AMSR-E and MODIS Products , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[50]  Hankui K. Zhang,et al.  Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land-cover changes , 2014 .

[51]  Xiao Xiang Zhu,et al.  Fusion of SAR and optical remote sensing data — Challenges and recent trends , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[52]  S. Goetz,et al.  Radiometric rectification - Toward a common radiometric response among multidate, multisensor images , 1991 .

[53]  Minha Choi,et al.  A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products , 2012 .

[54]  James A. Gardner,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Asia-Pacific Remote Sensing.

[55]  Xiao Xiang Zhu,et al.  A CNN for the identification of corresponding patches in SAR and optical imagery of urban scenes , 2017, 2017 Joint Urban Remote Sensing Event (JURSE).

[56]  Yunyan Du,et al.  An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes , 2018 .

[57]  Bo Huang,et al.  Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Alan C. Bovik,et al.  A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms , 2006, IEEE Transactions on Image Processing.

[59]  Jan Dirk Wegner,et al.  Toward Seamless Multiview Scene Analysis From Satellite to Street Level , 2017, Proceedings of the IEEE.

[60]  F. Javier García-Haro,et al.  A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion , 2015 .

[61]  Ruiliang Pu,et al.  Estimation of Subpixel Land Surface Temperature Using an Endmember Index Based Technique: A Case Examination on ASTER and MODIS Temperature Products Over a Heterogeneous Area , 2011 .

[62]  Russell C. Hardie,et al.  Application of the stochastic mixing model to hyperspectral resolution enhancement , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Peter M. Atkinson,et al.  Downscaling in remote sensing , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[64]  Xiangtao Zheng,et al.  Hyperspectral Image Superresolution by Transfer Learning , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[65]  Tim R. McVicar,et al.  Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection , 2013 .

[66]  Mingquan Wu,et al.  Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data , 2015, Sensors.

[67]  G. Henebry,et al.  Exploration of scaling effects on coarse resolution land surface phenology , 2017 .

[68]  Jian Peng,et al.  STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product , 2018, Remote Sensing of Environment.

[69]  Hankui K. Zhang,et al.  A New Look at Image Fusion Methods from a Bayesian Perspective , 2015, Remote. Sens..

[70]  Dominique Fasbender,et al.  Updating Scarce High Resolution Images with Time Series of Coarser Images: a Bayesian Data Fusion Solution , 2009 .

[71]  Christine Pohl,et al.  Remote sensing image fusion: an update in the context of Digital Earth , 2014, Int. J. Digit. Earth.

[72]  Eric A. Lehmann,et al.  Joint Processing of Landsat and ALOS-PALSAR Data for Forest Mapping and Monitoring , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[73]  Wim G.M. Bastiaanssen,et al.  First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure , 2013 .

[74]  Mingquan Wu,et al.  Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring , 2015, Remote. Sens..

[75]  Chiman Kwan,et al.  Hyperspectral image super-resolution: a hybrid color mapping approach , 2016 .

[76]  Hiroki Mizuochi,et al.  Monitoring of an Indonesian Tropical Wetland by Machine Learning-Based Data Fusion of Passive and Active Microwave Sensors , 2018, Remote. Sens..

[77]  Bo Huang,et al.  Spatiotemporal Reflectance Fusion via Sparse Representation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Sos S. Agaian,et al.  Transform-based image enhancement algorithms with performance measure , 2001, IEEE Trans. Image Process..

[79]  Davide Cozzolino,et al.  Pansharpening by Convolutional Neural Networks , 2016, Remote. Sens..

[80]  Joanne C. White,et al.  A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS , 2009 .

[81]  A. Al Bitar,et al.  An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data , 2010 .

[82]  Yuzhong Shen,et al.  Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images , 2018, Sensors.

[83]  Lucien Wald,et al.  Data Fusion. Definitions and Architectures - Fusion of Images of Different Spatial Resolutions , 2002 .

[84]  Mariana Belgiu,et al.  Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis , 2018 .

[85]  M. Schaepman,et al.  Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics , 2009 .

[86]  Verónica Andreo,et al.  Rodents and satellites: Predicting mice abundance and distribution with Sentinel-2 data , 2019, Ecol. Informatics.

[87]  Hassan Foroosh,et al.  Extension of phase correlation to subpixel registration , 2002, IEEE Trans. Image Process..

[88]  Hassan Ghassemian,et al.  A review of remote sensing image fusion methods , 2016, Inf. Fusion.

[89]  Jocelyn Chanussot,et al.  Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[90]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[91]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  Conghe Song,et al.  Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain , 2011 .

[93]  Bo Huang,et al.  Unified fusion of remote-sensing imagery: generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations , 2013 .

[94]  Liangpei Zhang,et al.  A unified framework for spatio-temporal-spectral fusion of remote sensing images , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[95]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[96]  Yee Leung,et al.  A Bayesian Data Fusion Approach to Spatio-Temporal Fusion of Remotely Sensed Images , 2017, Remote. Sens..

[97]  A. Stein,et al.  Region- and pixel-based image fusion for disaggregation of actual evapotranspiration , 2015 .

[98]  Neil Flood,et al.  Comparing Sentinel-2A and Landsat 7 and 8 Using Surface Reflectance over Australia , 2017, Remote. Sens..

[99]  Bin Chen,et al.  A hierarchical spatiotemporal adaptive fusion model using one image pair , 2017, Int. J. Digit. Earth.

[100]  Lu Su,et al.  Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase , 2004 .

[101]  Xiao Xiang Zhu,et al.  Data Fusion and Remote Sensing: An ever-growing relationship , 2016, IEEE Geoscience and Remote Sensing Magazine.

[102]  Liang-pei Zhang,et al.  Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature , 2015 .

[103]  Hankui K. Zhang,et al.  Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences , 2018, Remote Sensing of Environment.

[104]  M. Vohland,et al.  Downscaling land surface temperatures at regional scales with random forest regression , 2016 .

[105]  Linna Chai,et al.  Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method , 2016, Remote. Sens..

[106]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[107]  Mingquan Wu,et al.  Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring. , 2015, Environmental science. Processes & impacts.

[108]  Qingshan Liu,et al.  Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[109]  Peijuan Wang,et al.  Fusing Landsat and MODIS Data for Vegetation Monitoring , 2015, IEEE Geoscience and Remote Sensing Magazine.

[110]  Peter M. Atkinson,et al.  Spatio-temporal fusion for daily Sentinel-2 images , 2018 .

[111]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[112]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[113]  Manfred Ehlers,et al.  Multi-sensor image fusion for pansharpening in remote sensing , 2010 .

[114]  Bo Yang,et al.  Cokriging method for spatio-temporal assimilation of multi-scale satellite data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[115]  Rabab Kreidieh Ward,et al.  Deep learning for pixel-level image fusion: Recent advances and future prospects , 2018, Inf. Fusion.

[116]  Hiroki Mizuochi,et al.  Evaluation of the Surface Water Distribution in North-Central Namibia Based on MODIS and AMSR Series , 2014, Remote. Sens..

[117]  Liangpei Zhang,et al.  An Integrated Framework for the Spatio–Temporal–Spectral Fusion of Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[118]  Bertrand Le Saux,et al.  Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks , 2017, ISPRS Journal of Photogrammetry and Remote Sensing.

[119]  Zhuosen Wang,et al.  A Cross Comparison of Spatiotemporally Enhanced Springtime Phenological Measurements From Satellites and Ground in a Northern U.S. Mixed Forest , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[120]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[121]  Quazi K. Hassan,et al.  Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images , 2015 .

[122]  Jan Verbesselt,et al.  Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[123]  Hongyi Liu,et al.  A New Pan-Sharpening Method With Deep Neural Networks , 2015, IEEE Geoscience and Remote Sensing Letters.

[124]  Alfred Stein,et al.  Use of single- and multi-source image fusion for statistical decision-making , 2005 .

[125]  Giles M. Foody,et al.  Spatial-temporal fraction map fusion with multi-scale remotely sensed images , 2018, Remote Sensing of Environment.

[126]  Joon Heo,et al.  A Standardized Radiometric Normalization Method for Change Detection Using Remotely Sensed Imagery , 2000 .

[127]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[128]  Abdollah A. Jarihani,et al.  Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Index-then-Blend" and "Blend-then-Index" Approaches , 2014, Remote. Sens..

[129]  Xiaolin Zhu,et al.  Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions , 2018, Remote. Sens..

[130]  Luciano Alparone,et al.  A global quality measurement of pan-sharpened multispectral imagery , 2004, IEEE Geoscience and Remote Sensing Letters.

[131]  Xiao Xiang Zhu,et al.  FusioNet: A two-stream convolutional neural network for urban scene classification using PolSAR and hyperspectral data , 2017, 2017 Joint Urban Remote Sensing Event (JURSE).

[132]  Fuqun Zhou,et al.  A Prediction Smooth Method for Blending Landsat and Moderate Resolution Imagine Spectroradiometer Images , 2018, Remote. Sens..

[133]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[134]  Wu Wenbo,et al.  STUDY OF REMOTE SENSING IMAGE FUSION AND ITS APPLICATION IN IMAGE CLASSIFICATION , 2008 .