The dinuclear iron‐oxo ferroxidase center of Pyrococcus furiosus ferritin is a stable prosthetic group with unexpectedly high reduction potentials

[1]  M. A. Carrondo,et al.  Crystallization and preliminary X-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[2]  Elizabeth C. Theil,et al.  Rapid reduction of iron in horse spleen ferritin by thioglycolic acid measured by dispersive X-ray absorption spectroscopy , 1990, Biology of Metals.

[3]  D. Oesterhelt,et al.  Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Chiancone,et al.  Iron and proteins for iron storage and detoxification , 2004, Biometals.

[5]  M. A. Carrondo,et al.  The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans , 2003, Nature Structural Biology.

[6]  F. Marken,et al.  The direct electrochemistry of ferritin compared with the direct electrochemistry of nanoparticulate hydrous ferric oxide , 2002 .

[7]  T. J. Stillman,et al.  The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives. , 2001, Journal of molecular biology.

[8]  Phillip,et al.  Initial Iron Oxidation in Horse Spleen Apoferritin , 2001 .

[9]  P. Harrison,et al.  Mineralization in ferritin: an efficient means of iron storage. , 1999, Journal of structural biology.

[10]  R. Frankel,et al.  Redox reactivity of animal apoferritins and apoheteropolymers assembled from recombinant heavy and light human chain ferritins. , 1999, Biochemistry.

[11]  Elizabeth C. Theil,et al.  Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization. , 1997, Biochemistry.

[12]  N. Chasteen,et al.  Rapid kinetics of the EPR-active species formed during initial iron uptake in horse spleen apoferritin. , 1994, Biochemistry.

[13]  R. Frankel,et al.  Redox reactions of apo mammalian ferritin. , 1992, Biochemistry.

[14]  P. Harrison,et al.  Mössbauer spectroscopic investigation of structure-function relations in ferritins. , 1991, Biochimica et biophysica acta.

[15]  I. Ritchie,et al.  Stepped potential microcoulometry of ferritin. , 1991, Analytical biochemistry.

[16]  N. Chasteen,et al.  Initial iron oxidation in horse spleen apoferritin. Characterization of a mixed-valence iron(II)-iron(III) complex. , 1991, The Journal of biological chemistry.

[17]  R. Frankel,et al.  Redox reactions associated with iron release from mammalian ferritin. , 1989, Biochemistry.

[18]  M. Weir,et al.  Electron spin resonance studies of splenic ferritin and haemosiderin. , 1985, Biochimica et biophysica acta.

[19]  P. Aisen,et al.  Iron deposition in apoferritin. Evidence for the formation of a mixed valence binuclear iron complex. , 1985, The Journal of biological chemistry.

[20]  William R. Dunham,et al.  Quantitative Numerical Analysis of g Strain in the EPR of Distributed Systems and Its Importance for Multicenter Metalloproteins , 1985 .

[21]  Y. Umezawa,et al.  An electrochemical study of the iron storage protein, ferritin. , 1980, Biochimica et biophysica acta.

[22]  P. Dutton Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. , 1978, Methods in enzymology.