Optimizing Complex Problems by Nature's Algorithms: Simulated Annealing and Evolution Strategy - A Comparative Study
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] John J. Grefenstette. Proceedings of the First International Conference on Genetic Algorithms and their Applications, July 24-26, 1985, at the Carnegie-Mellon University, Pittsburgh, PA , 1988 .
[3] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[4] I. Morgenstern,et al. Heidelberg Colloquium on Glassy Dynamics , 1987 .
[5] V. Cerný. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .
[6] Emile H. L. Aarts,et al. Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.
[7] Marcel J. E. Golay,et al. The merit factor of long low autocorrelation binary sequences , 1982, IEEE Trans. Inf. Theory.
[8] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[9] D. E. Goldberg,et al. Genetic Algorithms in Search , 1989 .
[10] J. Bernasconi. Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .
[11] Lawrence Davis,et al. Genetic Algorithms and Simulated Annealing , 1987 .
[12] Karl Heinz Hoffmann,et al. The optimal simulated annealing schedule for a simple model , 1990 .
[13] R. Janßen,et al. Minimizing spin-glass hamiltonians in APL2 , 1989, APLQ.
[14] J. P. Secrétan,et al. Der Saccus endolymphaticus bei Entzündungsprozessen , 1944 .
[15] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .