Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate

Organometallic halide perovskite-based solar cells have exhibited rapidly increasing efficiencies through the use of mesoporous composites. The addition of materials used in organic solar cells to perovskite-based solar cells (PSCs) enables the fabrication of low-cost, flexible, low-temperature, solution-processed PSCs. However, obtaining sufficient coverage of the organic layer, usually poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS), with CH3NH3PbI3–xClx films remains difficult in spite of the advances. In this study, we investigated the influence of controlling the solvent evaporation rate on the degree of PEDOT:PSS surface coverage by CH3NH3PbI3–xClx. We determined that an adequately fast spinning speed, drying at room temperature, and stepwise ramp annealing are critical for obtaining optimized planar hybrid perovskite solar cells with an ITO/PEDOT:PSS/CH3NH3PbI3–xClx/PCBM/Al structure and efficiencies of up to 11.8%.

[1]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[2]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[3]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[4]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[5]  Daniel T. W. Toolan,et al.  In Situ Studies of Phase Separation and Crystallization Directed by Marangoni Instabilities During Spin‐Coating , 2013, Advanced materials.

[6]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[7]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[8]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[9]  Yossi Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[10]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[11]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[12]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[13]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[14]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[15]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[16]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[17]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[18]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[19]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[20]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[21]  Jun Lin,et al.  Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering , 2010 .

[22]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[23]  N. Bassiri‐Gharb,et al.  Chemical solution growth of ferroelectric oxide thin films and nanostructures. , 2014, Chemical Society reviews.

[24]  H. Snaith,et al.  The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[25]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[26]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[27]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.