3D Correlative Cryo-Structured Illumination Fluorescence and Soft X-ray Microscopy Elucidates Reovirus Intracellular Release Pathway

[1]  J. Sedat,et al.  CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging , 2020, bioRxiv.

[2]  Y. Guan,et al.  Precise correlative method of Cryo-SXT and Cryo-FM for organelle identification. , 2020, Journal of synchrotron radiation.

[3]  Peijun Zhang Advances in cryo-electron tomography and subtomogram averaging and classification , 2019, Current opinion in structural biology.

[4]  Abbas Shirinifard,et al.  Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells , 2019, Science.

[5]  D. Kong,et al.  High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy , 2019, Nature Communications.

[6]  D. Albrecht,et al.  Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation , 2018, bioRxiv.

[7]  Joachim P Spatz,et al.  Surface Immobilization of Viruses and Nanoparticles Elucidates Early Events in Clathrin-Mediated Endocytosis. , 2018, ACS infectious diseases.

[8]  Mick A Phillips,et al.  SPEKcheck — fluorescence microscopy spectral visualisation and optimisation: a web application, javascript library, and data resource , 2018, Wellcome open research.

[9]  R. Wepf,et al.  Robust workflow and instrumentation for cryo-focused ion beam milling of samples for electron cryotomography. , 2018, Ultramicroscopy.

[10]  Y. Hiraoka,et al.  Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy , 2018, Scientific Reports.

[11]  A. Koster,et al.  Advances in cryo-electron tomography for biology and medicine. , 2018, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[12]  Matthew C. Spink,et al.  Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells , 2018, Emerging topics in life sciences.

[13]  Xiang Zhou,et al.  The effects of chemical fixation on the cellular nanostructure , 2017, Experimental cell research.

[14]  Atsushi Matsuda,et al.  Strategic and practical guidelines for successful structured illumination microscopy , 2017, Nature Protocols.

[15]  Andrew P. French,et al.  SuRVoS: Super-Region Volume Segmentation workbench , 2017, Journal of structural biology.

[16]  David N. Mastronarde,et al.  Automated tilt series alignment and tomographic reconstruction in IMOD. , 2017, Journal of structural biology.

[17]  Jean Salamero,et al.  eC-CLEM: Flexible Multidimensional Registration Software for Correlative Microscopies with Refined Accuracy Mapping , 2017, Microscopy and Microanalysis.

[18]  L. Addadi,et al.  Development of Correlative Cryo-soft X-ray Tomography and Stochastic Reconstruction Microscopy. A Study of Cholesterol Crystal Early Formation in Cells. , 2016, Journal of the American Chemical Society.

[19]  Elizabeth A. Smith,et al.  Herpes simplex virus 1 induces egress channels through marginalized host chromatin , 2016, Scientific Reports.

[20]  G. Whittaker,et al.  Fusion of Enveloped Viruses in Endosomes , 2016, Traffic.

[21]  Ian M. Dobbie,et al.  SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy , 2015, Scientific Reports.

[22]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[23]  J. Plitzko,et al.  Cryo-focused-ion-beam applications in structural biology. , 2015, Archives of biochemistry and biophysics.

[24]  Michael T Ryan,et al.  Analysis of ER–mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells , 2015, Journal of Cell Science.

[25]  John R. Allen,et al.  Fixation-resistant photoactivatable fluorescent proteins for correlative light and electron microscopy , 2014, Nature methods.

[26]  Elizabeth A. Smith,et al.  Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. , 2014, Biophysical journal.

[27]  L. Collinson,et al.  Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)☆ , 2014, Ultramicroscopy.

[28]  Ian M. Dobbie,et al.  Super-Resolution Microscopy Using Standard Fluorescent Proteins in Intact Cells under Cryo-Conditions , 2014, Nano letters.

[29]  Grant J. Jensen,et al.  Correlated cryogenic photoactivated localization microscopy and electron cryotomography , 2014, Nature Methods.

[30]  T. Kirchhausen,et al.  Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin–Darby canine kidney cells , 2013, Molecular biology of the cell.

[31]  C. Wiethoff,et al.  Spatiotemporal Dynamics of Adenovirus Membrane Rupture and Endosomal Escape , 2012, Journal of Virology.

[32]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[33]  Bernardo A. Mainou,et al.  Transport to Late Endosomes Is Required for Efficient Reovirus Infection , 2012, Journal of Virology.

[34]  F. Braet,et al.  Correlative microscopy: providing new understanding in the biomedical and plant sciences. , 2012, Micron.

[35]  S. Rehbein,et al.  Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging. , 2012, Journal of structural biology.

[36]  S. Rehbein,et al.  Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells , 2012, Journal of structural biology.

[37]  S. Rehbein,et al.  Cryo X-ray nano-tomography of vaccinia virus infected cells , 2011, Journal of Structural Biology.

[38]  John W Sedat,et al.  OMX: a new platform for multimodal, multichannel wide-field imaging. , 2011, Cold Spring Harbor protocols.

[39]  Gerd Schneider,et al.  Three-dimensional cellular ultrastructure resolved by X-ray microscopy , 2010, Nature Methods.

[40]  D. Toomre,et al.  A new wave of cellular imaging. , 2010, Annual review of cell and developmental biology.

[41]  Charles Kervrann,et al.  Fast live simultaneous multiwavelength four-dimensional optical microscopy , 2010, Proceedings of the National Academy of Sciences.

[42]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[43]  G. McDermott,et al.  High‐aperture cryogenic light microscopy , 2009, Journal of microscopy.

[44]  S. Watkins Cryosectioning , 2009, Current protocols in cytometry.

[45]  T. Wilson,et al.  Image formation in structured illumination wide-field fluorescence microscopy. , 2008, Micron.

[46]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[47]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[48]  Florian Beck,et al.  Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. , 2007, Journal of structural biology.

[49]  J. McIntosh,et al.  Cryo‐fluorescence microscopy facilitates correlations between light and cryo‐electron microscopy and reduces the rate of photobleaching , 2007, Journal of microscopy.

[50]  S. Harrison,et al.  Reovirus μ1 Structural Rearrangements That Mediate Membrane Penetration , 2006, Journal of Virology.

[51]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[52]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[53]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[54]  Christoph Peters,et al.  Cathepsin L and Cathepsin B Mediate Reovirus Disassembly in Murine Fibroblast Cells* , 2002, The Journal of Biological Chemistry.

[55]  V. Puri,et al.  Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. , 2002, The Journal of clinical investigation.

[56]  J. Swedlow,et al.  A workingperson's guide to deconvolution in light microscopy. , 2001, BioTechniques.

[57]  C. Larabell,et al.  High resolution protein localization using soft X‐ray microscopy , 2001, Journal of microscopy.

[58]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[59]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[60]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[61]  D. Mastronarde Dual-axis tomography: an approach with alignment methods that preserve resolution. , 1997, Journal of structural biology.

[62]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[63]  M. Nibert,et al.  Cells and viruses with mutations affecting viral entry are selected during persistent infections of L cells with mammalian reoviruses , 1993, Journal of virology.

[64]  P. Echlin Ice crystal damage and radiation effects in relation to microscopy and analysis at low temperatures , 1991, Journal of microscopy.

[65]  S. Silbernagl,et al.  Madin-Darby canine kidney cells , 1990, Pflügers Archiv.

[66]  M. Nibert,et al.  Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle , 1987, Journal of virology.

[67]  J. Dubochet,et al.  VITRIFICATION OF PURE WATER FOR ELECTRON MICROSCOPY , 1981 .

[68]  T Wilson,et al.  The theory of the direct‐view confocal microscope , 1981, Journal of microscopy.

[69]  R. K. Cross,et al.  Genome RNAs and polypeptides of reovirus serotypes 1, 2, and 3 , 1977, Journal of virology.

[70]  Lord Rayleigh F.R.S. LVI. Investigations in optics, with special reference to the spectroscope , 1879 .

[71]  C. Thirukkumaran,et al.  Oncolytic viral therapy using reovirus. , 2009, Methods in molecular biology.

[72]  P. Roy Reoviruses: Entry, Assembly and Morphogenesis , 2006 .

[73]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[74]  G. Talukder,et al.  Effects of copper on mammalian cell components. , 1989, Chemico-biological interactions.

[75]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.