How to analyse powder nuclear quadrupole interaction data with non-axial symmetry for interdependent electric field gradient tensor components

The measurement of nuclear quadrupole interactions from powder (random) samples yields two parameters, namely Vzz and the asymmetry parameter η. Usually, these two parameters are plotted separately versus an external variable. This parametrization is perfectly suited to hide correlations between electric field gradient tensor components, even linear dependences. A new parametrization is proposed that, in the case of linear dependences, consists of a constant scale factor, the ‘asymptotic’ asymmetry parameter, also a constant, and a control parameter that is the only function of an external variable. This parametrization reduces the number of freely adjustable parameters in data fitting by nearly a factor of two. All solid-state effects are contained in a single control parameter. In the case of linear dependences, a two-tiered data analysis is proposed that is compulsory. An extension of the analysis to nonlinear dependences is given as well. The proposed two-tier analysis in the Czjzek plot reveals the structure of the electric field gradient (EFG) tensor. Several examples will be given.

[1]  T. Butz,et al.  Nuclear quadrupole interaction atS44cin the anatase and rutile modifications ofTiO2: Time-differential perturbed-angular-correlation measurements andab initiocalculations , 2008 .

[2]  R. Blinc,et al.  Order-disorder component in the phase transition mechanism of 18O enriched strontium titanate. , 2005, Physical review letters.

[3]  R. Blinc,et al.  NMR study of disorder in Ba Ti O 3 and Sr Ti O 3 , 2005 .

[4]  R. Pirc,et al.  Off-center Ti model of barium titanate , 2004 .

[5]  T. Butz On nuclear quadrupole interaction “families” , 2003 .

[6]  N. Dalal,et al.  Single-crystal magic-angle spinning 17O NMR and theoretical studies of the antiferroelectric phase transition in squaric acid , 2003 .

[7]  T. Butz,et al.  A NEW APPROACH IN NUCLEAR QUADRUPOLE INTERACTION DATA ANALYSIS : CROSS-CORRELATION , 1996 .

[8]  T. Butz Nuclear Quadrupole Interactions Studied by Time Differential Perturbed Angular Correlations of γ-Rays , 1996 .

[9]  Schwarz,et al.  Electric-field-gradient calculations for systems with large extended-core-state contributions. , 1992, Physical review. B, Condensed matter.

[10]  H. Kolem,et al.  The unusual temperature dependence of the electric field gradient at titanium sites in rutile (TiO2) , 1988 .

[11]  D. Michel,et al.  13C-NMR study of the phase transition in the layered antiferroelectric squaric acid , 1987 .

[12]  T. Butz,et al.  Lattice instabilities in HfTe5 , 1987 .

[13]  R. Heidinger,et al.  Temperature dependence of the electric field gradient in HfF4.HF.2H2O , 1986 .

[14]  R. Blinc 17O NQR and the Mechanism of the Phase Transition in KH2PO4 Type H-bonded Systems , 1986 .

[15]  R. Blinc,et al.  Oxygen-17 NQR study of the phase transition in squaric acid , 1984 .

[16]  G. Czjzek Distribution of nuclear quadrupole splittings in amorphous materials and the topology of the (Vzz, η)-parameter space , 1983 .

[17]  A. Weiss,et al.  On the Order‐Disorder Phase Transition of Anilinium Halides. VI. Phase Transition in 4‐RC6H4NH 3⊕X⊖, and C6H5NR'H 2⊕X⊖, X = Br,I. A 79,81 Br and 127I NQR Study , 1983 .

[18]  R. Blinc,et al.  17O NQR study of the ferroelectric phase transition in PbHPO4 , 1983 .

[19]  G. Kaindl,et al.  Temperature-Induced Changes of the Electronic Structure of Ferroelectric LiTaO 3 , 1981 .

[20]  S. Havlin,et al.  Temperature dependence of the electric quadrupole interaction in PbHfO3 , 1978 .

[21]  P. J. Bray,et al.  14N nuclear quadrupole resonance and relaxation measurements of sodium nitrite , 1976 .

[22]  Alarich Weiss,et al.  Die Temperaturabhängigkeit der Kernquadrupolkopplungskonstante von Na23 in Natriumnitrit, NaNO2 , 1962 .