Nanostructured graded-index core chalcogenide fiber with all-normal dispersion-design and nonlinear simulations.

We propose a new approach to developing of graded-index chalcogenide fibers. Since chalcogenide glasses are incompatible with current vapor deposition techniques, the arbitrary refractive index gradient is obtained by means of core nanostructurization by the effective medium approach. We study the influence of graded-index core profile and the core diameter on the fiber dispersion characteristics. Flat, normal dispersion profiles across the mid-infrared transmission window of the assumed glasses are easily obtained for the investigated core nanostructure layouts. Nonlinear propagation simulations enable to expect 3.5-8.5 µm spectrum of coherent, pulse preserving supercontinuum. Fabrication feasibility of the proposed fiber is also discussed.

[1]  Edmund Koch,et al.  Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range. , 2011, Journal of biomedical optics.

[2]  Terutoshi Kanamori,et al.  Chalcogenide glass fibers for mid-infrared transmission , 1984 .

[3]  F. Wise,et al.  Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. , 2015, Optics letters.

[4]  H. Giessen,et al.  High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. , 2015, Optics letters.

[5]  Ravindra Kumar Sinha,et al.  Broadband Mid-Infrared Supercontinuum Spectra Spanning 2–15 μm Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber , 2015, Journal of Lightwave Technology.

[6]  Alexander M. Heidt,et al.  Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers , 2010 .

[7]  Dariusz Pysz,et al.  Optical fibers with gradient index nanostructured core. , 2015, Optics express.

[8]  Ori Henderson-Sapir,et al.  Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. , 2016, Optics letters.

[9]  T. Katsuyama,et al.  Low loss Ge‐Se chalcogenide glass optical fibers , 1984 .

[10]  Daniel A. Nolan,et al.  Self-organized instability in graded-index multimode fibres , 2016 .

[11]  Michel Piché,et al.  23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm , 2016, LASE.

[12]  Lei Zhang,et al.  Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser , 2017 .

[13]  Cynthia F. Booker,et al.  Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. , 2009, Journal of biomedical optics.

[14]  M R Taghizadeh,et al.  Design and fabrication of nano-structured gradient index microlenses. , 2009, Optics express.

[15]  Trevor M. Benson,et al.  Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation , 2014 .

[16]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.

[17]  Vincent Couderc,et al.  Chalcogenide glasses with high non linear optical properties for telecommunications , 2001 .

[18]  Réal Vallée,et al.  Compact 3-8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber. , 2016, Optics letters.

[19]  Jasbinder S. Sanghera,et al.  All-fiber chalcogenide-based mid-infrared supercontinuum source , 2012 .

[20]  Takenobu Suzuki,et al.  Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber , 2017 .

[21]  Vincent Couderc,et al.  Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves. , 2016, Physical review letters.

[22]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[23]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.

[24]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[25]  T. Godin,et al.  Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires. , 2014, Optics letters.

[26]  A. Seddon A Prospective for New Mid‐Infrared Medical Endoscopy Using Chalcogenide Glasses , 2011 .

[27]  Tonglei Cheng,et al.  Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. , 2016, Optics letters.

[28]  Vladimir Shiryaev,et al.  Trends and prospects for development of chalcogenide fibers for mid-infrared transmission , 2013 .

[29]  Ryszard Stepien,et al.  Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres , 2016 .

[30]  A. Seddon,et al.  Solid Microstructured Chalcogenide Glass Optical Fibers for the Near- and Mid-Infrared Spectral Regions , 2009, IEEE Photonics Technology Letters.

[31]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.