On a Generalization of Injective Rings

Abstract A ring R is called left IP-injective if every homomorphism from a left ideal of R into R with principal image is given by right multiplication by an element of R. It is shown that R is left IP-injective if and only if R is left P-injective and left GIN (i.e., r(I ∩ K) = r(I) + r(K) for each pair of left ideals I and K of R with I principal). We prove that R is QF if and only if R is right noetherian and left IP-injective if and only if R is left perfect, left GIN and right simple-injective. We also show that, for a right CF left GIN-ring R, R is QF if and only if Soc(R R ) ⊆ Soc( R R). Two examples are given to show that an IP-injective ring need not be self-injective and a right IP-injective ring is not necessarily left IP-injective respectively.