Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process

[1]  Y. Hua,et al.  Dependence of the relative sensitivity factor of nitrogen on various oxynitride dielectric matrixes , 2013 .

[2]  K. Wörhoff,et al.  Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics. , 2013, Optics letters.

[3]  Kazuhiro Kato,et al.  Stable deposition of silicon oxynitride thin films with intermediate refractive indices by reactive sputtering , 2012 .

[4]  S. Wenham,et al.  Effect of PECVD silicon oxynitride film composition on the surface passivation of silicon wafers , 2012 .

[5]  V. Gritsenko,et al.  Electronic structure of silicon oxynitride: Ab-initio and experimental study, comparison with silicon nitride , 2011 .

[6]  N. Martin,et al.  Silicon oxynitride thin films synthesised by the reactive gas pulsing process using rectangular pulses , 2011 .

[7]  Byoung Hun Lee,et al.  Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics , 2011 .

[8]  Tibor Grasser,et al.  Depth localization of positive charge trapped in silicon oxynitride field effect transistors after positive and negative gate bias temperature stress , 2011 .

[9]  M. Seah,et al.  Sputtering yields of compounds using argon ions , 2010 .

[10]  S. Schmauder,et al.  Molecular dynamics simulations of the sputtering of SiC and Si3N4 , 2010 .

[11]  E. Le Bourhis,et al.  ZrOxNy decorative thin films prepared by the reactive gas pulsing process , 2009 .

[12]  P. Frach,et al.  Reactive pulse magnetron sputtered SiOxNy coatings on polymers , 2009 .

[13]  Y. Lai,et al.  Influences of silicon nano-crystallized structures on the optical performance of silicon oxynitride rib-type waveguides , 2008 .

[14]  H. Yoon,et al.  Silicon oxynitride gas barrier coatings on poly(ether sulfone) by plasma-enhanced chemical vapor deposition , 2008 .

[15]  M. Vasilevskiy,et al.  Influence of air oxidation on the properties of decorative NbOxNy coatings prepared by reactive gas pulsing , 2008 .

[16]  Paolo Magnone,et al.  Performance of current mirror with high-k gate dielectrics , 2008 .

[17]  I. Lin,et al.  Mechanical properties of sputtered silicon oxynitride films by nanoindentation , 2008 .

[18]  YanXu Zhu,et al.  Effects of the passivation layer deposition temperature on the electrical and optical properties of GaN-based light-emitting diodes , 2007 .

[19]  F. Vaz,et al.  Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process. Part I: Pattern and period of pulses , 2007 .

[20]  F. Vaz,et al.  Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process: Part III: The particular case of exponential pulses , 2007 .

[21]  M. Dubois,et al.  SiOxNy thin films deposited by reactive sputtering: Process study and structural characterisation , 2007 .

[22]  J. Pierson,et al.  Investigation of Niobium oxynitride thin films deposited by reactive magnetron sputtering , 2006 .

[23]  N. D. Rooij,et al.  Optical, electrical and mechanical properties of the tantalum oxynitride thin films deposited by pulsing reactive gas sputtering , 2006 .

[24]  D. Depla,et al.  Hysteresis behavior during reactive magnetron sputtering of Al2O3 using a rotating cylindrical magnetron , 2006 .

[25]  J. Pierson,et al.  Structural, optical and electrical properties of reactively sputtered iron oxynitride films , 2006 .

[26]  D. J. Christie,et al.  Control of reactive sputtering processes , 2005 .

[27]  M. Dubois,et al.  Structural and optical investigations of SiOxNy thin films deposited by R.F. sputtering , 2005 .

[28]  A. Muñoz-Martín,et al.  RBS and ERD characterization of SiON films for optical waveguide applications , 2005 .

[29]  S. Berg,et al.  Fundamental understanding and modeling of reactive sputtering processes , 2005 .

[30]  D. Depla,et al.  Target poisoning during reactive magnetron sputtering: Part II: the influence of chemisorption and gettering , 2004 .

[31]  M. Weaver,et al.  Thin-film permeation-barrier technology for flexible organic light-emitting devices , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Yongjin Wang,et al.  Optimization of PECVD silicon oxynitride films for anti-reflection coating , 2003 .

[33]  S. Iwamori,et al.  Characterization of silicon oxynitride gas barrier films , 2002 .

[34]  D. N. Bose,et al.  Plasma enhanced growth, composition and refractive index of silicon oxynitride films , 2002 .

[35]  N. Martin,et al.  Influence of two reactive gases on the instabilities of the reactive sputtering process , 2001 .

[36]  T. Lohner,et al.  Refractive index of sputtered silicon oxynitride layers for antireflection coating , 2001 .

[37]  Yoji Saito,et al.  Structural stability of ultrathin silicon oxynitride film improved by incorporated nitrogen , 2001 .

[38]  L. Martinu,et al.  Mechanical properties of plasma-deposited SiOxNy coatings on polymer substrates using low load carrying capacity techniques , 2000 .

[39]  I. Maximov,et al.  High-fluence Co implantation in Si, SiO2/Si and Si3N4/Si: Part I: formation of thin silicide surface films , 1999 .

[40]  I. Maximov,et al.  High-fluence Co implantation in Si, SiO2/Si and Si3N4/Si: Part II: sputtering yield transients, the approach to high-fluence equilibrium , 1999 .

[41]  N. Martin,et al.  Instabilities of the reactive sputtering process involving one metallic target and two reactive gases , 1999 .

[42]  A. Billard,et al.  Stable and unstable conditions of the sputtering mode by modulating at low frequency the current of a magnetron discharge , 1997 .

[43]  R. Berjoan,et al.  Composition-density and refractive index relations in PECVD silicon oxynitrides thin films , 1997 .

[44]  S. Berg,et al.  Hysteresis effects in the sputtering process using two reactive gases , 1995 .

[45]  V. Rocher,et al.  An Oxynitride ISFET Modified for Working in a Differential Mode for pH Detection , 1994 .

[46]  S. Berg,et al.  Reactive sputtering using two reactive gases, experiments and computer modeling , 1993 .

[47]  E. Kusano An investigation of hysteresis effects as a function of pumping speed, sputtering current, and O2/Ar ratio, in Ti‐O2 reactive sputtering processes , 1991 .

[48]  H. Takakura,et al.  Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties , 1989 .

[49]  J. Osenbach,et al.  Sodium diffusion in plasma‐deposited amorphous oxygen‐doped silicon nitride (a‐SiON:H) films , 1988 .

[50]  J. Musil,et al.  Influence of the pumping speed on the hysteresis effect in the reactive sputtering of thin films , 1987 .

[51]  A. Kuiper,et al.  Characterization of Silicon‐Oxynitride Films Deposited by Plasma‐Enhanced CVD , 1986 .

[52]  G. Ripoche,et al.  First life-test results on planar p-i-n InGaAs/InP photodiodes passivated with SiO2or SiNx+SiO2or SiNxlayers , 1985, IEEE Electron Device Letters.

[53]  M. Rand,et al.  Silicon Oxynitride Films from the NO ‐ NH 3 ‐ SiH4 Reaction , 1973 .