Investigation of stresses in he orthogonal cutting of fiber-reinforced plastics

A photoelastic study was conducted to examine the stress fields in the cutting process of fiber-reinforced plastics (FRPs). Force measurements were made and used in the analysis of the stress fields. Machined surfaces of workpieces with fibers oriented away from the cutting direction showed that the fibers were machined by shearing and tensile fracture; and when fibers were inclined towards the cutting tool, the fibers failed by shearing and bending. In addition, fiber-matrix debonding was observed to be maximum for fibers oriented at 45 deg towards the tool's path. Fiber orientation was shown to have an influence on the machining forces and stresses.