New supersymmetric AdS4 type II vacua

We review the supersymmetric AdS4 ×wℳ︁6 backgrounds of type IIA/IIB supergravity constructed in [1]. In type IIA the supersymmetry is 𝒩 = 2, and the six‐dimensional internal space is locally an S2 bundle over a four‐dimensional Kähler‐Einstein base; in IIB the internal space is the direct product of a circle and a five‐dimensional squashed Sasaki‐Einstein manifold. These backgrounds do not contain any sources, all fluxes (including the Romans mass in IIA) are generally non‐zero, and the dilaton and warp factor are non‐constant. The IIA solutions include the massive deformations of the IIA reduction of the eleven‐dimensional AdS4 × Yp,q solutions, and had been predicted to exist on the basis of the AdS4/CFT3 correspondence.

[1]  D. Gaiotto,et al.  The gauge dual of Romans mass , 2009, 0901.0969.

[2]  A. Zaffaroni,et al.  Script N = 2 solutions of massive type IIA and their Chern-Simons duals , 2009, 0904.4915.

[3]  D. Gaiotto,et al.  Perturbing gauge/gravity duals by a Romans mass , 2009, 0904.3959.

[4]  D. Tsimpis,et al.  Classes of AdS4 type IIA/IIB compactifications with SU(3) × SU(3) structure , 2009, 0901.4474.

[5]  C. Vafa,et al.  GUTs and exceptional branes in F-theory — I , 2008, 0802.3391.

[6]  J. Sparks,et al.  Notes on toric Sasaki-Einstein seven-manifolds and AdS4/CFT3 , 2008, 0808.0904.

[7]  C. Vafa,et al.  GUTs and exceptional branes in F-theory — II. Experimental predictions , 2008, 0806.0102.

[8]  D. Tsimpis,et al.  Supersymmetric sources, integrability and generalized-structure compactifications , 2007, 0706.1244.

[9]  R. Minasian,et al.  Generalized structures of N=1 vacua , 2005, hep-th/0505212.

[10]  D. Tsimpis,et al.  Supersymmetric AdS(4) compactifications of IIA supergravity , 2004, hep-th/0412250.

[11]  D. Waldram,et al.  A New infinite class of Sasaki-Einstein manifolds , 2004, hep-th/0403038.

[12]  D. Waldram,et al.  Sasaki-Einstein Metrics on S^2 x S^3 , 2004 .

[13]  D. Waldram,et al.  Sasaki-Einstein Metrics on S^2\times S^3 , 2004 .

[14]  Marco Gualtieri,et al.  Generalized Complex Geometry , 2004, University Lecture Series.

[15]  N. Hitchin Generalized Calabi-Yau manifolds , 2002, math/0209099.

[16]  C. Boyer,et al.  $3$-Sasakian manifolds , 1998, hep-th/9810250.

[17]  T. Friedrich,et al.  Einstein manifolds of dimension five with small first eigenvalue of the Dirac operator , 1989 .

[18]  S. Yau,et al.  Kähler-Einstein metrics on complex surfaces withC1>0 , 1987 .

[19]  V. I. Tkach,et al.  On the relationship between compactified vacua of d = 11 and d = 10 supergravities , 1985 .

[20]  C. Pope,et al.  Hopf Fibration of Eleven-dimensional Supergravity , 1984 .

[21]  V. I. Tkach,et al.  KALUZA-KLEIN THEORIES AND SPONTANEOUS COMPACTIFICATION MECHANISMS OF EXTRA SPACE DIMENSIONS , 1984 .