Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes

This article deals with the calculation of the shielding tensor of nuclear magnetic resonance (NMR) spectroscopy based on a scalar relativistic two-component Pauli-type Hamiltonian. A complete formulation of the method within the framework of the gauge including atomic orbitals (GIAO) is given. Further, an implementation, based on density functional theory (DFT) is presented. The new method is applied to the 17O shielding in transition-metal oxo complexes [MO4]n- (M = Cr, Mo, W; Mn, Tc, Rh; Ru, Os) and to the metal chemical shift in transition-metal carbonyls M(CO)6 (M = Cr, Mo, W). This represents the first calculation of heavy-element shifts that is based on a relativistic first-principle quantum mechanical method. The inclusion of relativity is crucial for a proper description of ligand and metal shieldings in 5d complexes, but it is also important in 4d complexes. Limitations of the method, among them the neglect of the spin-orbit coupling, are discussed in detail. © 1997 John Wiley & Sons, Inc.

[1]  Dennis R. Salahub,et al.  Calculation of ligand NMR chemical shifts in transition-metal complexes using ab initio effective-core potentials and density functional theory , 1995 .

[2]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[3]  W. C. Ermler,et al.  Spin-Orbit Coupling and Other Relativistic Effects in Atoms and Molecules , 1988 .

[4]  D. Rehder Early Transition Metals, Lanthanides and Actinides , 1987 .

[5]  A. Rajagopal Inhomogeneous relativistic electron gas , 1978 .

[6]  H. Duddeck Selenium-77 nuclear magnetic resonance spectroscopy , 1995 .

[7]  Georg Schreckenbach,et al.  The implementation of analytical energy gradients based on a quasi‐relativistic density functional method: The application to metal carbonyls , 1995 .

[8]  P. Pyykko Relativistic theory of nuclear spin-spin coupling in molecules , 1977 .

[9]  W. Kutzelnigg Perturbation theory of relativistic corrections , 1989 .

[10]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[11]  Evert Jan Baerends,et al.  A perturbation theory approach to relativistic calculations , 1978 .

[12]  A. Dalgarno,et al.  A perturbation calculation of properties of the helium iso-electronic sequence , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[14]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[15]  Cynthia J. Jameson,et al.  Concurrent 19F and 77Se or 19F and 125Te NMR T1 measurements for determination of 77Se and 125Te absolute shielding scales , 1987 .

[16]  R. Wasylishen,et al.  A more reliable oxygen‐17 absolute chemical shielding scale , 1984 .

[17]  Dennis R. Salahub,et al.  NUCLEAR MAGNETIC RESONANCE SHIELDING TENSORS CALCULATED WITH A SUM-OVER-STATES DENSITY FUNCTIONAL PERTURBATION THEORY , 1994 .

[18]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[19]  D. Salahub,et al.  Calculations of NMR shielding constants beyond uncoupled density functional theory. IGLO approach , 1993 .

[20]  Cynthia J. Jameson Gas-phase NMR spectroscopy , 1991 .

[21]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[22]  G. Schreckenbach,et al.  A Reassessment of the First Metal-Carbonyl Dissociation Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a Quasirelativistic Density Functional Method , 1995 .

[23]  A. Lipton,et al.  Comments concerning the computation of cadmium-113 chemical shifts , 1993 .

[24]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[25]  G. Schreckenbach,et al.  Relativistic Effects on Metal-Ligand Bond Strengths in .pi.-Complexes: Quasi-Relativistic Density Functional Study of M(PH3)2X2 (M = Ni, Pd, Pt; X2 = O2, C2H2, C2H4) and M(CO)4(C2H4) (M = Fe, Ru, Os) , 1995 .

[26]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[27]  W. Jr. Pauli,et al.  Zur Quantenmechanik des magnetischen Elektrons , 1927 .

[28]  P. Dirac The quantum theory of the electron , 1928 .

[29]  Evert Jan Baerends,et al.  Roothaan-Hartree-Fock-Slater atomic wave functions , 1981 .

[30]  A. Dalgarno,et al.  A perturbation calculation of properties of the 2pπ state of HeH2+ , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[32]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[33]  John F. Stanton,et al.  Gauge‐invariant calculation of nuclear magnetic shielding constants at the coupled–cluster singles and doubles level , 1995 .

[34]  G. Schreckenbach,et al.  The Metal Carbon Double Bond in Fischer Carbenes: A Density Functional Study of the Importance of Nonlocal Density Corrections and Relativistic Effects , 1994 .

[35]  P. Dirac The Quantum Theory of the Electron. Part II , 1928 .

[36]  G. Schreckenbach,et al.  The calculation of 77Se chemical shifts using gauge including atomic orbitals and density functional theory , 1996 .

[37]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[38]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[39]  Dennis R. Salahub,et al.  Scalar Relativistic Effects on 17O NMR Chemical Shifts in Transition-Metal Oxo Complexes. An ab Initio ECP/DFT Study , 1995 .

[40]  Evert Jan Baerends,et al.  Calculation of bond energies in compounds of heavy elements by a quasi-relativistic approach , 1989 .

[41]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[42]  Dennis R. Salahub,et al.  Calculations of NMR shielding constants by uncoupled density functional theory , 1993 .

[43]  Hiroshi Nakatsuji,et al.  SPIN-ORBIT EFFECT ON THE MAGNETIC SHIELDING CONSTANT USING THE AB INITIO UHF METHOD , 1995 .

[44]  Tom Ziegler The 1994 Alcan Award Lecture Density functional theory as a practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT , 1995 .

[45]  Leif A. Eriksson,et al.  The calculation of NMR and ESR spectroscopy parameters using density functional theory , 1995 .

[46]  V. H. Smith,et al.  Invalidity of the ubiquitous mass‐velocity operator in quasirelativistic theories , 1986 .

[47]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[48]  G. Schreckenbach,et al.  Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .

[49]  R. Nyholm,et al.  Oxygen-17 nuclear magnetic resonance of inorganic compounds , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[51]  L. Foldy,et al.  On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit , 1950 .

[52]  Dennis R. Salahub,et al.  Calculation of spin—spin coupling constants using density functional theory , 1994 .

[53]  Brian B. Laird,et al.  Chemical Applications of Density-Functional Theory , 1996 .

[54]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[55]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[56]  G. te Velde,et al.  Three‐dimensional numerical integration for electronic structure calculations , 1988 .

[57]  K. Pitzer Relativistic calculations of dissociation energies and related properties , 1982 .

[58]  A. Dalgarno,et al.  On the perturbation theory of small disturbances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  E. Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations II. The effect of exchange scaling in some small molecules , 1973 .

[60]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[61]  Notker Rösch,et al.  A transparent interpretation of the relativistic contribution to the N.M.R. ‘heavy atom chemical shift’ , 1987 .

[62]  G. Schreckenbach,et al.  First Bond Dissociation Energy of M(CO)6 (M = Cr, Mo, W ) Revisited: The Performance of Density Functional Theory and the Influence of Relativistic Effects , 1994 .

[63]  Pekka Pyykkö,et al.  On the relativistic theory of NMR chemical shifts , 1983 .

[64]  Y. Ruiz-Morales,et al.  Theoretical Study of 13C and 17O NMR Shielding Tensors in Transition Metal Carbonyls Based on Density Functional Theory and Gauge-Including Atomic Orbitals , 1996 .