On possibilistic clustering with repulsion constraints for imprecise data

In possibilistic clustering objects are assigned to clusters according to the so-called membership degrees taking values in the unit interval. Differently from fuzzy clustering, it is not required that the sum of the membership degrees of an object to all clusters is equal to one. This is very helpful in the presence of outliers, which are usually assigned to the clusters with membership degrees close to zero. Unfortunately, a drawback of the possibilistic approach is the tendency to produce coincident clusters. A remedy is to add a repulsion term among prototypes in the loss function forcing the prototypes to be far 'enough' from each other. Here, a possibilistic clustering algorithm with repulsion constraints for imprecise data, managed in terms of fuzzy sets, is introduced. Applications to synthetic and real fuzzy data are considered in order to analyze how the proposed clustering algorithm works in practice.

[1]  P. Nagabhushan,et al.  Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..

[2]  R. Kruse,et al.  An extension to possibilistic fuzzy cluster analysis , 2004, Fuzzy Sets Syst..

[3]  Mohammad Reza Meybodi,et al.  Efficient stochastic algorithms for document clustering , 2013, Inf. Sci..

[4]  Miin-Shen Yang,et al.  Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..

[5]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..

[6]  Miin-Shen Yang,et al.  Fuzzy clustering procedures for conical fuzzy vector data , 1999, Fuzzy Sets Syst..

[7]  Pierpaolo D'Urso,et al.  Fuzzy Clustering of Fuzzy Data , 2007 .

[8]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[9]  Michel Ménard,et al.  Possibilistic and probabilistic fuzzy clustering: unification within the framework of the non-extensive thermostatistics , 2003, Pattern Recognit..

[10]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[11]  Rudolf Kruse,et al.  Clustering with Repulsive Prototypes , 2008, GfKl.

[12]  Miin-Shen Yang,et al.  Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation , 2005, Fuzzy Sets Syst..

[13]  Miin-Shen Yang,et al.  On a class of fuzzy c-numbers clustering procedures for fuzzy data , 1996, Fuzzy Sets Syst..

[14]  Wim De Mulder Optimal clustering in the context of overlapping cluster analysis , 2013, Inf. Sci..

[15]  Manabu Ichino,et al.  Generalized Minkowski metrics for mixed feature-type data analysis , 1994, IEEE Trans. Syst. Man Cybern..

[16]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[17]  William-Chandra Tjhi,et al.  Possibilistic fuzzy co-clustering of large document collections , 2007, Pattern Recognit..

[18]  Pierpaolo D'Urso,et al.  A weighted fuzzy c , 2006, Comput. Stat. Data Anal..

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Pierpaolo D'Urso,et al.  Fuzzy and possibilistic clustering for fuzzy data , 2012, Comput. Stat. Data Anal..

[21]  Rudolf Kruse,et al.  Fuzzy Clustering with Repulsive Prototypes , 2009, Scalable Fuzzy Algorithms for Data Management and Analysis.

[22]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[23]  Paolo Giordani,et al.  Principal Component Analysis of symmetric fuzzy data , 2004, Comput. Stat. Data Anal..

[24]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[25]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[26]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[27]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[28]  Mauro Barni,et al.  Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..

[29]  Anne Laurent,et al.  Scalable Fuzzy Algorithms for Data Management and Analysis - Methods and Design , 2009, Scalable Fuzzy Algorithms for Data Management and Analysis.

[30]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[31]  Miin-Shen Yang,et al.  A Robust Automatic Merging Possibilistic Clustering Method , 2011, IEEE Transactions on Fuzzy Systems.