Modelling linear and nonlinear behavior of polycrystalline ferroelectric ceramics

A micro-electromechanical model is presented, which describes the macroscopic behavior of ferroelectric ceramics under weak signal and unipolar large signal loading conditions. The approach is based on a laminar domain structure and a hierarchical homogenization procedure, which considers grains as spherical inclusions within a homogenized effective medium. The model predicts the extrinsic effects of mobile domain walls, hysteresis at large fields, and ferroelectric fatigue by unipolar cycling. Additionally, internal fields can be estimated. As an example, numerical results and available experimental data for barium titanate ceramics are discussed.

[1]  G. Arlt,et al.  Domain configuration and equilibrium size of domains in BaTiO3 ceramics , 1980 .

[2]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[3]  Jürgen Nuffer,et al.  Damage evolution in ferroelectric PZT induced by bipolar electric cycling , 2000 .

[4]  Johannes Roedel,et al.  Modeling of domain wall contribution to the effective properties of polycrystalline ferroelectric ceramics , 2000, Smart Structures.

[5]  V. Aleshin Properties of anisotropic piezoactive polycrystals , 2000 .

[6]  V. Topolov,et al.  On a correlation between remanent polarization and piezoelectric coefficients of perovskite-type ferroelectric ceramics , 2000 .

[7]  Chad M. Landis Symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  A. V. Turik,et al.  The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ferroelectric ceramics , 1990 .

[9]  G. Arlt,et al.  Switching and dielectric nonlinearity of ferroelectric ceramics , 1996 .

[10]  Rainer Waser,et al.  Study of electrical and mechanical contribution to switching in ferroelectric/ferroelastic polycrystals , 2000 .

[11]  Q. Qin,et al.  Effective moduli for thermopiezoelectric materials with microcracks , 1998 .

[12]  D. Berlincourt,et al.  Domain Processes in Lead Titanate Zirconate and Barium Titanate Ceramics , 1959 .

[13]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[14]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[15]  W. Lu,et al.  Nonlinear electric–mechanical behavior and micromechanics modelling of ferroelectric domain evolution , 1999 .

[16]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[17]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .

[18]  T. Ikeda,et al.  Electrostriction in Perovskite-Type Ferroelectric Ceramics , 1967 .

[19]  Stephen C. Hwang,et al.  A finite element model of ferroelastic polycrystals , 1999 .

[20]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[21]  Marc Kamlah,et al.  A constitutive model for ferroelectric PZT ceramics under uniaxial loading , 1999 .

[22]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[23]  J. Rödel,et al.  Self-consistent modelling of non-linear effective properties of polycrystalline ferroelectric ceramics , 2000 .

[24]  Wei Chen,et al.  A micro-electro-mechanical model for polarization switching of ferroelectric materials , 1998 .

[25]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[26]  Jiangyu Li The effective electroelastic moduli of textured piezoelectric polycrystalline aggregates , 2000 .

[27]  Daining Fang,et al.  Micromechanics simulation of ferroelectric polarization switching , 1997 .

[28]  Cheng-Feng Yue,et al.  Fatigue of Ferroelectric Polarization and the Electric Field Induced Strain in Lead Lanthanum Zirconate Titanate Ceramics , 1992 .

[29]  R. Waser,et al.  Aggregate linear properties of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective piezoelectric medium , 1998 .

[30]  D. Hall Review Nonlinearity in piezoelectric ceramics , 2001 .

[31]  G. Arlt,et al.  90°-domain wall relaxation in tetragonally distorted ferroelectric ceramics , 1987 .

[32]  Martin L. Dunn,et al.  Inclusions and inhomogeneities in transversely isotropic piezoelectric solids , 1997 .

[33]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[34]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[35]  Ferroelectric ceramics with a large piezoelectric anisotropy , 1997 .

[36]  Masakazu Marutake,et al.  A Calculation of Physical Constants of Ceramic Barium Titanate , 1956 .

[37]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .