CLUSTERING-BASED COLLOCATION FOR UNCERTAINTY PROPAGATION WITH MULTIVARIATE DEPENDENT INPUTS

textabstractIn this article, we propose the use of partitioning and clustering methods as an alternative to Gaussian quadrature for stochastic collocation (SC). The key idea is to use cluster centers as the nodes for collocation. In this way, we can extend the use of collocation methods to uncertainty propagation with multivariate, correlated input. The approach is particularly useful in situations where the probability distribution of the input is unknown, and only a sample from the input distribution is available. We examine several clustering methods and assess their suitability for stochastic collocation numerically using the Genz test functions as benchmark. The proposed methods work well, most notably for the challenging case of nonlinearly correlated inputs in higher dimensions. Tests with input dimension up to 16 are included. Furthermore, the clustering-based collocation methods are compared to regular SC with tensor grids of Gaussian quadrature nodes. For 2-dimensional uncorrelated inputs, regular SC performs better, as should be expected, however the clustering-based methods also give only small relative errors. For correlated 2-dimensional inputs, clustering-based collocation outperforms a simple adapted version of regular SC, where the weights are adjusted to account for input correlation

[1]  Nikos A. Vlassis,et al.  The global k-means clustering algorithm , 2003, Pattern Recognit..

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[4]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[5]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[6]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[7]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[8]  Adil M. Bagirov,et al.  Modified global k-means algorithm for minimum sum-of-squares clustering problems , 2008, Pattern Recognit..

[9]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[10]  Yousef Saad,et al.  Farthest Centroids Divisive Clustering , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[11]  George Em Karniadakis,et al.  Stochastic simulations of ocean waves: An uncertainty quantification study , 2015 .

[12]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[13]  Flávio Miguel Varejão,et al.  K-Means Initialization Methods for Improving Clustering by Simulated Annealing , 2008, IBERAMIA.

[14]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[15]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[16]  Charles Elkan,et al.  Using the Triangle Inequality to Accelerate k-Means , 2003, ICML.

[17]  Robert W. Walters,et al.  Uncertainty analysis for fluid mechanics with applications , 2002 .

[18]  B. Sanderse,et al.  Energy-Conserving Navier-Stokes Solver. Verification of steady laminar flows , 2011 .

[19]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[20]  Hester Bijl,et al.  Uncertainty Quantification in Computational Fluid Dynamics , 2013, Lecture Notes in Computational Science and Engineering.

[21]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[22]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[23]  O. Burggraf Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.

[24]  Richard C. Dubes,et al.  Experiments in projection and clustering by simulated annealing , 1989, Pattern Recognit..

[25]  B. Sanderse,et al.  Energy-conserving discretization methods for the incompressible Navier-Stokes equations : application to the simulation of wind-turbine wakes , 2013 .

[26]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[27]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[28]  Michael B. Cohen,et al.  Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.

[29]  Shokri Z. Selim,et al.  A simulated annealing algorithm for the clustering problem , 1991, Pattern Recognit..

[30]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[31]  Jeroen A. S. Witteveen,et al.  Efficient Quantification of the Effect of Uncertainties in Advection-Diffusion Problems Using Polynomial Chaos , 2008 .

[32]  Ting Su,et al.  A deterministic method for initializing K-means clustering , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[33]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[34]  Jeroen A. S. Witteveen,et al.  Stochastic collocation for correlated inputs , 2015 .

[35]  B. Jaumard,et al.  Efficient algorithms for divisive hierarchical clustering with the diameter criterion , 1990 .

[36]  Pierre Hansen,et al.  Analysis of Global k-Means, an Incremental Heuristic for Minimum Sum-of-Squares Clustering , 2005, J. Classif..

[37]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[38]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[39]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .