CorrelatedMultiples: Spatially Coherent Small Multiples With Constrained Multi‐Dimensional Scaling

Displaying small multiples is a popular method for visually summarizing and comparing multiple facets of a complex data set. If the correlations between the data are not considered when displaying the multiples, searching and comparing specific items become more difficult since a sequential scan of the display is often required. To address this issue, we introduce CorrelatedMultiples, a spatially coherent visualization based on small multiples, where the items are placed so that the distances reflect their dissimilarities. We propose a constrained multi‐dimensional scaling (CMDS) solver that preserves spatial proximity while forcing the items to remain within a fixed region. We evaluate the effectiveness of our approach by comparing CMDS with other competing methods through a controlled user study and a quantitative study, and demonstrate the usefulness of CorrelatedMultiples for visual search and comparison in three real‐world case studies.

[1]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[2]  Jarke J. van Wijk,et al.  Squarified Treemaps , 2000, VisSym.

[3]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Kim Marriott,et al.  Dunnart: A Constraint-Based Network Diagram Authoring Tool , 2009, GD.

[7]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[8]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  Junbin Gao,et al.  A new algorithm for removing node overlapping in graph visualization , 2007, Inf. Sci..

[10]  Yifan Hu,et al.  Efficient Node Overlap Removal Using a Proximity Stress Model , 2009, GD.

[11]  Minglun Gong,et al.  Organizing Visual Data in Structured Layout by Maximizing Similarity-Proximity Correlation , 2013, ISVC.

[12]  Xiaotong Liu,et al.  CompactMap: A mental map preserving visual interface for streaming text data , 2013, 2013 IEEE International Conference on Big Data.

[13]  Daniel A. Keim,et al.  Rolled‐out Wordles: A Heuristic Method for Overlap Removal of 2D Data Representatives , 2012, Comput. Graph. Forum.

[14]  Furu Wei,et al.  Context preserving dynamic word cloud visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[15]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[16]  Elias Salomão Helou Neto,et al.  Similarity Preserving Snippet-Based Visualization of Web Search Results , 2014, IEEE Transactions on Visualization and Computer Graphics.

[17]  L. Ruby Leung,et al.  Moist Thermodynamics of the Madden–Julian Oscillation in a Cloud-Resolving Simulation , 2011 .

[18]  Fabien Jourdan,et al.  Multiscale hybrid MDS , 2004 .

[19]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[20]  Kim Marriott,et al.  Constrained graph layout by stress majorization and gradient projection , 2009, Discret. Math..

[21]  Minglun Gong,et al.  Data organization and visualization using self-sorting map , 2011, Graphics Interface.

[22]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[23]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[24]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[25]  Xiaotong Liu,et al.  Supporting multifaceted viewing of word clouds with focus+context display , 2015, Inf. Vis..

[26]  Pravin M. Vaidya Geometry helps in matching , 1988, STOC '88.

[27]  Jacques Bertin,et al.  Graphics and graphic information-processing , 1981 .

[28]  Y. Koren,et al.  Dig-CoLa: directed graph layout through constrained energy minimization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[29]  Jason Dykes,et al.  Spatially Ordered Treemaps , 2008, IEEE Transactions on Visualization and Computer Graphics.

[30]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[31]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[32]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[33]  Vijay V. Raghavan,et al.  A critical investigation of recall and precision as measures of retrieval system performance , 1989, TOIS.

[34]  Leonidas J. Guibas,et al.  The Earth Mover's Distance under transformation sets , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[35]  Bettina Speckmann,et al.  Improved Grid Map Layout by Point Set Matching , 2015, Int. J. Comput. Geom. Appl..

[36]  Kwan-Liu Ma,et al.  A hybrid space-filling and force-directed layout method for visualizing multiple-category graphs , 2009, 2009 IEEE Pacific Visualization Symposium.

[37]  Maria Cristina Ferreira de Oliveira,et al.  An incremental space to visualize dynamic data sets , 2010, Multimedia Tools and Applications.

[38]  Peter J. Stuckey,et al.  Fast Node Overlap Removal , 2005, GD.

[39]  David Whitney,et al.  How Capacity Limits of Attention Influence Information Visualization Effectiveness , 2012, IEEE Transactions on Visualization and Computer Graphics.

[40]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[41]  Ulrik Brandes,et al.  Multi-circular Layout of Micro/Macro Graphs , 2007, GD.

[42]  Niklas Elmqvist,et al.  Graphical Perception of Multiple Time Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[43]  Gabriel Taubin,et al.  Mixed Integer Optimization for Layout Arrangement , 2013, 2013 XXVI Conference on Graphics, Patterns and Images.

[44]  Wolfgang Berger,et al.  A Model for Structure-Based Comparison of Many Categories in Small-Multiple Displays , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  Roberto Tamassia,et al.  Constraints in Graph Drawing Algorithms , 1998, Constraints.

[46]  Jason Dykes,et al.  Visualizing the Dynamics of London's Bicycle-Hire Scheme , 2011, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[47]  Benjamin B. Bederson,et al.  PhotoMesa: a zoomable image browser using quantum treemaps and bubblemaps , 2001, UIST '01.

[48]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[49]  George G. Robertson,et al.  Layout with Circular and Other Non-linear Constraints Using Procrustes Projection , 2009, GD.

[50]  Kerry Rodden,et al.  Evaluating a visualisation of image similarity as a tool for image browsing , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[51]  Joe Marks,et al.  An interactive constraint-based system for drawing graphs , 1997, UIST '97.