A low cost and high efficient Ba9(Lu2-x-yAlx)Si6O24:yCe3+ cyan-emitting phosphor

[1]  Hai Guo,et al.  Tunable white-light emission and energy transfer in single-phase Bi3+,Eu3+ co-doped Ba9Y2Si6O24 phosphors for UV w-LEDs , 2019, Journal of Luminescence.

[2]  Ru‐Shi Liu,et al.  Structural Evolution and Effect of the Neighboring Cation on the Photoluminescence of Sr(LiAl3 )1-x (SiMg3 )x N4 :Eu2+ Phosphors. , 2019, Angewandte Chemie.

[3]  Jun Jiang,et al.  Transparent Ceramics Enabling High Luminous Flux and Efficacy for the Next-Generation High-Power LED Light. , 2019, ACS applied materials & interfaces.

[4]  Z. Xia,et al.  Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition , 2019, Light: Science & Applications.

[5]  Jun Lin,et al.  New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization , 2019, Light, science & applications.

[6]  Jun Jiang,et al.  Warm White Light with a High Color-Rendering Index from a Single Gd3Al4GaO12:Ce3+ Transparent Ceramic for High-Power LEDs and LDs. , 2019, ACS applied materials & interfaces.

[7]  I. Reaney,et al.  The cyan-green luminescent behaviour of nitrided Ba9Y2Si6O24: Eu2+ phosphors for W-LED , 2018, Ceramics International.

[8]  T. Senden,et al.  Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors , 2018, Light: Science & Applications.

[9]  Kaixin Song,et al.  Investigation on Ce3+ luminescence from different crystallographic sites, self energy transfer and abnormal thermal stability of nitrided Ba9Y2Si6O24: Ce3+ phosphor for W-LEDs , 2018 .

[10]  Jun Jiang,et al.  Tunable luminescent spectra via energy transfers between different lattice sites in Ce3+, Mn2+ codoped Ba9Lu2Si6O24 phosphors for NUV-based warm white LED applications , 2018, Journal of Materials Science: Materials in Electronics.

[11]  Jack Silver,et al.  An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application , 2017 .

[12]  Jun Lin,et al.  Recent development in phosphors with different emitting colors via energy transfer , 2016 .

[13]  Xiaojun Wang,et al.  Ca1−xLixAl1−xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes , 2016, Light: Science & Applications.

[14]  X. Chen,et al.  A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes , 2016, Light: Science & Applications.

[15]  Jun Jiang,et al.  High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers , 2016 .

[16]  Setsuhisa Tanabe,et al.  Insight into the Thermal Quenching Mechanism for Y3Al5O12:Ce3+ through Thermoluminescence Excitation Spectroscopy , 2015 .

[17]  Jun Jiang,et al.  Red-Emitting Phosphor Ba9Lu2Si6O24:Ce3+,Mn2+ with Enhanced Energy Transfer via Self-Charge Compensation , 2015 .

[18]  Tuomas Poikonen,et al.  Advantages of white LED lamps and new detector technology in photometry , 2015, Light: Science & Applications.

[19]  Jun Gao,et al.  Energy transfer and color tuning in the Ba9Sc2Si6O24:Ce3+,Eu2+,Mn2+ phosphor , 2015 .

[20]  Jun Jiang,et al.  Ba9Lu2Si6O24:Ce3+: An Efficient Green Phosphor with High Thermal and Radiation Stability for Solid‐State Lighting , 2015 .

[21]  Quanlin Liu,et al.  The crystal structure and luminescence of phosphor Ba9Sc2Si6O24:Eu2+,Mn2+ for white light emitting diode , 2015 .

[22]  Tim Lougheed,et al.  Hidden Blue Hazard? LED Lighting and Retinal Damage in Rats , 2014, Environmental health perspectives.

[23]  Jun Lin,et al.  How to produce white light in a single-phase host? , 2014, Chemical Society reviews.

[24]  Ji Hye Oh,et al.  Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance , 2014 .

[25]  Yongchao Jia,et al.  Crystal Structure and Luminescence Properties of Ca8Mg3Al2Si7O28:Eu2+ for WLEDs , 2014 .

[26]  Zhiyong Mao,et al.  Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu 2+ phosphor for white-emitting diodes† , 2013 .

[27]  S. Denbaars,et al.  An efficient, thermally stable cerium-based silicate phosphor for solid state white lighting. , 2013, Inorganic chemistry.

[28]  F. Liu,et al.  New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion , 2013, Light: Science & Applications.

[29]  Xiaojun Wang,et al.  Yellow-emitting (Ca2Lu1−xCex)(ScMg)Si3O12 phosphor and its application for white LEDs , 2012 .

[30]  H. Hosono,et al.  A novel phosphor for glareless white light-emitting diodes , 2012, Nature Communications.

[31]  Xiaojun Wang,et al.  Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer. , 2011, Chemical communications.

[32]  Ru‐Shi Liu,et al.  Advances in Phosphors for Light-emitting Diodes. , 2011, The journal of physical chemistry letters.

[33]  Xiaojun Wang,et al.  Generation of broadband emission by incorporating N3− into Ca3Sc2Si3O12 : Ce3+ garnet for high rendering white LEDs , 2011 .

[34]  A. Meijerink,et al.  Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce , 2009 .

[35]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[36]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[37]  Naoki Kobayashi,et al.  High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors , 2003 .

[38]  D. Skene,et al.  An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans , 2001, The Journal of physiology.

[39]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[40]  Zhonghua Deng,et al.  Moisture‐Resistant Mn 4+ ‐Doped Core–Shell‐Structured Fluoride Red Phosphor Exhibiting High Luminous Efficacy for Warm White Light‐Emitting Diodes , 2019, Angewandte Chemie.