Equilibria of biological aggregations with nonlocal repulsive-attractive interactions

Abstract We consider the aggregation equation ρ t − ∇ ⋅ ( ρ ∇ K ∗ ρ ) = 0 in R n , where the interaction potential K incorporates short-range Newtonian repulsion and long-range power-law attraction. We study the global well-posedness of solutions and investigate analytically and numerically the equilibrium solutions. We show that there exist unique equilibria supported on a ball of R n . By using the method of moving planes we prove that such equilibria are radially symmetric and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases when the exponent of the power-law attraction approaches infinity and a Newtonian singularity, respectively. Numerical simulations suggest that equilibria studied here are global attractors for the dynamics of the aggregation model.

[1]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[2]  Andrea L. Bertozzi,et al.  Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations , 2012, SIAM J. Math. Anal..

[3]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[4]  Wenxiong Chen,et al.  Classification of solutions for an integral equation , 2006 .

[5]  Darryl D. Holm,et al.  Formation of clumps and patches in self-aggregation of finite-size particles , 2005, nlin/0506020.

[6]  Li Dong,et al.  FINITE-TIME SINGULARITIES OF AN AGGREGATION EQUATION IN R WITH FRACTIONAL DISSIPATION , 2008 .

[7]  J. A. Carrillo,et al.  Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability , 2011, 1109.5258.

[8]  M. SIAMJ.,et al.  EXISTENCE OF WEAK SOLUTIONS TO SOME VORTEX DENSITY MODELS , 2003 .

[9]  Darryl D. Holm,et al.  Aggregation of finite-size particles with variable mobility. , 2005, Physical review letters.

[10]  M. Bodnar,et al.  An integro-differential equation arising as a limit of individual cell-based models , 2006 .

[11]  A. Bertozzi,et al.  A theory of complex patterns arising from 2 D particle interactions , 2010 .

[12]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[13]  Martin Burger,et al.  Large time behavior of nonlocal aggregation models with nonlinear diffusion , 2008, Networks Heterog. Media.

[14]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[15]  Dong Li,et al.  Finite-Time Singularities of an Aggregation Equation in $${\mathbb {R}^n}$$ with Fractional Dissipation , 2009 .

[16]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[17]  A. Bertozzi,et al.  Stability of ring patterns arising from two-dimensional particle interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Gennadi Vainikko,et al.  Multidimensional Weakly Singular Integral Equations , 1993 .

[19]  M. Burger,et al.  Stationary states of quadratic diffusion equations with long-range attraction , 2011, 1103.5365.

[20]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[21]  Yihong Du,et al.  Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Vol. 1: Maximum Principles and Applications , 2006 .

[22]  Andrea L. Bertozzi,et al.  Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..

[23]  G. Raoul,et al.  STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS , 2010 .

[24]  Andrew J. Bernoff,et al.  A Primer of Swarm Equilibria , 2010, SIAM J. Appl. Dyn. Syst..

[25]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[26]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[27]  T. Kolokolnikov,et al.  PREDICTING PATTERN FORMATION IN PARTICLE INTERACTIONS , 2012 .

[28]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[29]  Andrew J. Bernoff,et al.  Asymptotic Dynamics of Attractive-Repulsive Swarms , 2008, SIAM J. Appl. Dyn. Syst..

[30]  E Weinan,et al.  Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity. , 1994, Physical review. B, Condensed matter.

[31]  F. Léger,et al.  AGGREGATION VIA THE NEWTONIAN POTENTIAL AND AGGREGATION PATCHES , 2011 .

[32]  Donald Estep,et al.  A power method for nonlinear operators , 2007 .

[33]  Razvan C. Fetecau,et al.  Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .

[34]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[35]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[36]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[37]  Ping Zhang,et al.  Global solutions to vortex density equations arising from sup-conductivity , 2005 .

[38]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[39]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.