Comparative Study of People Detection in Surveillance Scenes

We address the problem of determining if a given image region contains people or not, when environmental conditions such as viewpoint, illumination and distance of people from the camera are changing. We develop three generic approaches to discriminate between visual classes: ridge-based structural models, ridge-normalized gradient histograms, and linear auto-associative memories. We then compare the performance of these approaches on the problem of people detection for 26 video sequences taken from the CAVIAR database.

[1]  Bernt Schiele,et al.  Probabilistic object recognition using multidimensional receptive field histograms , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[2]  David C. Hogg,et al.  Learning Flexible Models from Image Sequences , 1994, ECCV.

[3]  Alice J. O'Toole,et al.  CATEGORIZATION AND IDENTIFICATION OF HUMAN FACE IMAGES BY NEURAL NETWORKS: A REVIEW OF THE LINEAR AUTOASSOCIATIVE AND PRINCIPAL COMPONENT APPROACHES , 1994 .

[4]  James L. Crowley,et al.  View Invariant Object Recognition using Coloured Receptive Fields , 2000 .

[5]  Larry S. Davis,et al.  Hydra: multiple people detection and tracking using silhouettes , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[6]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[7]  James L. Crowley,et al.  Fast Computation of Scale Normalised Gaussian Receptive Fields , 2003, Scale-Space.

[8]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[9]  J. Crowley,et al.  Estimating Face orientation from Robust Detection of Salient Facial Structures , 2004 .

[10]  C. Thorpe,et al.  Dressed human modeling, detection, and parts localization , 2001 .

[11]  Cordelia Schmid,et al.  Appariement d'images par invariants locaux de niveaux de gris. Application à l'indexation d'une base d'objets. (Image matching by local greyvalue invariants. Applied to indexing an object database) , 1996 .

[12]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[13]  Yee-Hong Yang,et al.  First Sight: A Human Body Outline Labeling System , 1995, IEEE Trans. Pattern Anal. Mach. Intell..