Multigrid for Q k Finite Element Matrices Using a (Block) Toeplitz Symbol Approach

In the present paper, we consider multigrid strategies for the resolution of linear systems arising from the Q k Finite Elements approximation of one- and higher-dimensional elliptic partial differential equations with Dirichlet boundary conditions and where the operator is div − a ( x ) ∇ · , with a continuous and positive over Ω ¯ , Ω being an open and bounded subset of R 2 . While the analysis is performed in one dimension, the numerics are carried out also in higher dimension d ≥ 2 , showing an optimal behavior in terms of the dependency on the matrix size and a substantial robustness with respect to the dimensionality d and to the polynomial degree k.

[1]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .

[2]  Stefano Serra Capizzano,et al.  Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..

[3]  Arno B. J. Kuijlaars,et al.  Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..

[4]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[5]  Stefano Serra Capizzano,et al.  Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions , 2016, Math. Comput..

[6]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[7]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[8]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[9]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[10]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[11]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[12]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[13]  Carlo Garoni,et al.  Block Locally Toeplitz Sequences: Construction and Properties , 2019, Structured Matrices in Numerical Linear Algebra.

[14]  Carlo Garoni,et al.  Block Generalized Locally Toeplitz Sequences: Topological Construction, Spectral Distribution Results, and Star-Algebra Structure , 2019, Structured Matrices in Numerical Linear Algebra.