Gaussian Copula Multivariate Modeling for Image Texture Retrieval Using Wavelet Transforms

In the framework of texture image retrieval, a new family of stochastic multivariate modeling is proposed based on Gaussian Copula and wavelet decompositions. We take advantage of copula paradigm which makes it possibl e to separate dependency structure from marginal behavio r. We introduce two new multivariate models using respect ively generalized Gaussian and Weibull density. These mod els capture both the subband marginal distributions and the corelation between wavelet coefficients. We derive, as a simil arity measure, a closed form solution of the Jeffrey divergence between Gaussian Copula based multivariate models. Experimental resu lts on the well-known databases show significant improvements in retrieval rates using the proposed method compared to the bes t known state-of-the-art approaches.

[1]  Abe Sklar,et al.  Random variables, joint distribution functions, and copulas , 1973, Kybernetika.

[2]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[5]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[8]  Jian Fan,et al.  Texture Classification by Wavelet Packet Signatures , 1993, MVA.

[9]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[10]  Ibrahim M. Elfadel,et al.  Gibbs Random Fields, Cooccurrences, and Texture Modeling , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Gabriele Lohmann,et al.  Analysis and synthesis of textures: a co-occurrence-based approach , 1995, Comput. Graph..

[12]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[13]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[14]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[15]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[16]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Paul Scheunders,et al.  Statistical texture characterization from discrete wavelet representations , 1999, IEEE Trans. Image Process..

[18]  Nuno Vasconcelos,et al.  A unifying view of image similarity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[19]  Nuno Vasconcelos,et al.  A probabilistic architecture for content-based image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[21]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[22]  Nicholas I. Fisher,et al.  Statistical Computing and Graphics Graphical Assessment of Dependence: Is a Picture Worth 100 Tests? , 2001 .

[23]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[24]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[25]  John Reidar Mathiassen,et al.  Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions , 2002, ECCV.

[26]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Michael S. Landy,et al.  Visual perception of texture , 2002 .

[28]  Yoichi Ando,et al.  Textural properties corresponding to visual perception based on the correlation mechanism in the visual system , 2003, Psychological research.

[29]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[30]  Gabriel Escarela,et al.  Fitting competing risks with an assumed copula , 2003, Statistical methods in medical research.

[31]  Shiri Gordon,et al.  An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Nuno Vasconcelos,et al.  On the efficient evaluation of probabilistic similarity functions for image retrieval , 2004, IEEE Transactions on Information Theory.

[33]  E. Luciano,et al.  Copula methods in finance , 2004 .

[34]  Tien D. Bui,et al.  Multivariate statistical modeling for image denoising using wavelet transforms , 2005, Signal Process. Image Commun..

[35]  Licheng Jiao,et al.  Multivariate Statistical Models for Image Denoising in the Wavelet Domain , 2007, International Journal of Computer Vision.

[36]  Haim H. Permuter,et al.  A study of Gaussian mixture models of color and texture features for image classification and segmentation , 2006, Pattern Recognit..

[37]  D. D.-Y. Po,et al.  Directional multiscale modeling of images using the contourlet transform , 2006, IEEE Transactions on Image Processing.

[38]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2005, IEEE Transactions on Image Processing.

[39]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2006, IEEE Trans. Image Process..

[40]  Tae Jin Kang,et al.  Texture classification and segmentation using wavelet packet frame and Gaussian mixture model , 2007, Pattern Recognit..

[41]  John R. Hershey,et al.  Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[42]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[43]  Andreas Uhl,et al.  Image similarity measurement by Kullback-Leibler divergences between complex wavelet subband statistics for texture retrieval , 2008, 2008 15th IEEE International Conference on Image Processing.

[44]  Victoria S. Uren,et al.  Comparing Dissimilarity Measures for Content-Based Image Retrieval , 2008, AIRS.

[45]  Andreas Uhl,et al.  A joint model of complex wavelet coefficients for texture retrieval , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[46]  Amel Benazza-Benyahia,et al.  Copula-based statistical models for multicomponent image retrieval in thewavelet transform domain , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[47]  Yannick Berthoumieu,et al.  Copulas based multivariate gamma modeling for texture classification , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[48]  Ivan Žežula,et al.  On multivariate Gaussian copulas , 2009 .

[49]  Éric Petit,et al.  Multivariate statistical modeling of images in sparse multiscale transforms domain , 2010, 2010 IEEE International Conference on Image Processing.

[50]  Amel Benazza-Benyahia,et al.  Fast scalable retrieval of multispectral images with Kullback-Leibler divergence , 2010, 2010 IEEE International Conference on Image Processing.

[51]  Andreas Uhl,et al.  Lightweight Probabilistic Texture Retrieval , 2010, IEEE Transactions on Image Processing.

[52]  Paul Scheunders,et al.  Geodesics on the Manifold of Multivariate Generalized Gaussian Distributions with an Application to Multicomponent Texture Discrimination , 2011, International Journal of Computer Vision.

[53]  Andreas Uhl,et al.  Efficient Texture Image Retrieval Using Copulas in a Bayesian Framework , 2011, IEEE Transactions on Image Processing.

[54]  Yannick Berthoumieu,et al.  Multivariate texture retrieval using the geodesic distance between elliptically distributed random variables , 2011, 2011 18th IEEE International Conference on Image Processing.

[55]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .