Electronic structure of the parent compound of superconducting infinite-layer nickelates
暂无分享,去创建一个
T. P. Devereaux | M. Hepting | Z. Hussain | D. Li | T. Schmitt | E. Paris | Haiyu Lu | H. Hwang | Y. Hikita | Z. Hussain | Y. Tseng | T. Schmitt | J. Zaanen | T. Devereaux | B. Moritz | M. Rossi | Z. Shen | A. Nag | A. Nag | W. S. Lee | K. Zhou | W. S. Lee | J. Zaanen | K. J. Zhou | B. Moritz | Z. X. Shen | Y.-D. Chuang | Y. Chuang | D. J. Huang | C. Jia | H. Y. Hwang | Y. Hikita | C. J. Jia | H. Lu | Y. Tseng | X. Feng | M. Osada | E. Been | A. Nag | M. Garcia-Fernandez | M. Rossi | H. Y. Huang | Danfeng Li | M. Osada | Zhixuan Shen | E. Paris | M. Hepting | D. Huang | M. García-Fernández | Wei-Sheng Lee | C. Jia | E. Been | Z. Shen | H. Lu | X. Feng | D. Li | H. Huang | H. Huang
[1] B. Coles. Heavy-fermion intermetallic compounds , 1987 .
[2] G. Stewart. Non-Fermi-liquid behavior in d - and f -electron metals , 2001 .
[3] K. Lee,et al. Infinite-layer LaNiO 2 : Ni 1 + is , 2022 .
[4] M. Mizumaki,et al. Reversible changes of epitaxial thin films from perovskite LaNiO3 to infinite-layer structure LaNiO2 , 2009 .
[5] V. Anisimov,et al. Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.
[6] N. Mott,et al. Discussion of the paper by de Boer and Verwey , 1937 .
[7] Kuiper,et al. Character of holes in LixNi1-xO and their magnetic behavior. , 1989, Physical review letters.
[8] K. Held,et al. Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. , 2008, Physical review letters.
[9] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] K. Lee,et al. Infinite-layer LaNiO2: Ni1+ is not Cu2+ , 2004 .
[11] Eberhard Goering,et al. Orbital reflectometry of oxide heterostructures. , 2010, Nature materials.
[12] M. Zwierzycki,et al. Multiplet ligand-field theory using Wannier orbitals , 2011, 1111.4940.
[13] Allen,et al. Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.
[14] Yanli Wang,et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .
[15] Rossi,et al. Studies of copper valence states with Cu L3 x-ray-absorption spectroscopy. , 1989, Physical review. B, Condensed matter.
[16] S. Middey,et al. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates , 2016, 1606.09291.
[17] M. Hayward,et al. Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO2 , 1999 .
[18] G. Sawatzky. Superconductivity seen in a non-magnetic nickel oxide , 2019, Nature.
[19] A. Ikeda,et al. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition , 2013 .
[20] Naoto Nagaosa,et al. Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.
[21] Harold Y. Hwang,et al. Superconductivity in an infinite-layer nickelate , 2019, Nature.
[22] T. Tohyama,et al. Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering , 2013, Nature Communications.
[23] Chen,et al. Electronic states in La2-xSrxCuO4+ delta probed by soft-x-ray absorption. , 1991, Physical review letters.
[24] Z. Fisk,et al. Heavy-electron metals , 1986, Nature.
[25] Hideki Yamamoto,et al. Direct observation of infinite NiO2 planes in LaNiO2 films , 2016 .
[26] G. Sawatzky,et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates , 2016, Nature Communications.
[27] A. Malashevich,et al. Orbital engineering in symmetry-breaking polar heterostructures. , 2015, Physical review letters.
[28] G. Sawatzky,et al. Systematics in band gaps and optical spectra of 3D transition metal compounds , 1990 .
[29] H.-U. Habermeier,et al. Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices , 2011, Science.
[30] L. D. Finkelstein,et al. Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides , 2008 .
[31] K. Wohlfeld,et al. Using RIXS to uncover elementary charge and spin excitations , 2015, 1510.05068.
[32] Stefano de Gironcoli,et al. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.
[33] J. Chaloupka,et al. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. , 2008, Physical review letters.
[34] V. Anisimov,et al. Electronic structure of possible nickelate analogs to the cuprates , 1999 .
[35] Arash A. Mostofi,et al. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..
[36] K. Lee,et al. Infinite-layerLaNiO2: Ni1+is notCu2+ , 2004, cond-mat/0405570.
[37] J. Mitchell,et al. Large orbital polarization in a metallic square-planar nickelate , 2017, Nature Physics.
[38] P. Odier,et al. LaNiO2: Synthesis and structural characterization , 2005 .