Electronic structure of the parent compound of superconducting infinite-layer nickelates

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO 2 (refs. 11 , 12 ) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO 2 and NdNiO 2 , while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5 d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with $$3d_{x^2-y^2}$$ 3 d x 2 − y 2 symmetry in the NiO 2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics 13 – 15 , which are well known for heavy fermion behaviour, where the NiO 2 correlated layers play an analogous role to the 4 f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences.

[1]  B. Coles Heavy-fermion intermetallic compounds , 1987 .

[2]  G. Stewart Non-Fermi-liquid behavior in d - and f -electron metals , 2001 .

[3]  K. Lee,et al.  Infinite-layer LaNiO 2 : Ni 1 + is , 2022 .

[4]  M. Mizumaki,et al.  Reversible changes of epitaxial thin films from perovskite LaNiO3 to infinite-layer structure LaNiO2 , 2009 .

[5]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[6]  N. Mott,et al.  Discussion of the paper by de Boer and Verwey , 1937 .

[7]  Kuiper,et al.  Character of holes in LixNi1-xO and their magnetic behavior. , 1989, Physical review letters.

[8]  K. Held,et al.  Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. , 2008, Physical review letters.

[9]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  K. Lee,et al.  Infinite-layer LaNiO2: Ni1+ is not Cu2+ , 2004 .

[11]  Eberhard Goering,et al.  Orbital reflectometry of oxide heterostructures. , 2010, Nature materials.

[12]  M. Zwierzycki,et al.  Multiplet ligand-field theory using Wannier orbitals , 2011, 1111.4940.

[13]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[14]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[15]  Rossi,et al.  Studies of copper valence states with Cu L3 x-ray-absorption spectroscopy. , 1989, Physical review. B, Condensed matter.

[16]  S. Middey,et al.  Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates , 2016, 1606.09291.

[17]  M. Hayward,et al.  Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO2 , 1999 .

[18]  G. Sawatzky Superconductivity seen in a non-magnetic nickel oxide , 2019, Nature.

[19]  A. Ikeda,et al.  Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition , 2013 .

[20]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[21]  Harold Y. Hwang,et al.  Superconductivity in an infinite-layer nickelate , 2019, Nature.

[22]  T. Tohyama,et al.  Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering , 2013, Nature Communications.

[23]  Chen,et al.  Electronic states in La2-xSrxCuO4+ delta probed by soft-x-ray absorption. , 1991, Physical review letters.

[24]  Z. Fisk,et al.  Heavy-electron metals , 1986, Nature.

[25]  Hideki Yamamoto,et al.  Direct observation of infinite NiO2 planes in LaNiO2 films , 2016 .

[26]  G. Sawatzky,et al.  Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates , 2016, Nature Communications.

[27]  A. Malashevich,et al.  Orbital engineering in symmetry-breaking polar heterostructures. , 2015, Physical review letters.

[28]  G. Sawatzky,et al.  Systematics in band gaps and optical spectra of 3D transition metal compounds , 1990 .

[29]  H.-U. Habermeier,et al.  Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices , 2011, Science.

[30]  L. D. Finkelstein,et al.  Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides , 2008 .

[31]  K. Wohlfeld,et al.  Using RIXS to uncover elementary charge and spin excitations , 2015, 1510.05068.

[32]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[33]  J. Chaloupka,et al.  Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. , 2008, Physical review letters.

[34]  V. Anisimov,et al.  Electronic structure of possible nickelate analogs to the cuprates , 1999 .

[35]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[36]  K. Lee,et al.  Infinite-layerLaNiO2: Ni1+is notCu2+ , 2004, cond-mat/0405570.

[37]  J. Mitchell,et al.  Large orbital polarization in a metallic square-planar nickelate , 2017, Nature Physics.

[38]  P. Odier,et al.  LaNiO2: Synthesis and structural characterization , 2005 .