An $L_1$-Method for the Design of Linear-Phase FIR Digital Filters

This paper considers the design of linear-phase finite impulse response digital filters using an L1 optimality criterion. The motivation for using such filters as well as a mathematical framework for their design is introduced. It is shown that L1 filters possess flat passbands and stopbands while keeping the transition band comparable to that of least-squares filters. The uniqueness of L1-based filters is explored, and an alternation type theorem for the optimal frequency response is derived. An efficient algorithm for calculating the optimal filter coefficients is proposed, which may be viewed as the analogue of the celebrated Remez exchange method. A comparison with other design techniques is made, demonstrating that the L1 approach may be a good alternative in several applications.

[1]  Masaaki Ikehara,et al.  Fast and stable least-squares approach for the design of linear phase FIR filters , 1998, IEEE Trans. Signal Process..

[2]  Ramesh A. Gopinath,et al.  Least squared error FIR filter design with transition bands , 1992, IEEE Trans. Signal Process..

[3]  Minsoo Suk,et al.  On the frequency weighted least-square design of finite duration filters , 1975 .

[4]  Y. Lim,et al.  Discrete coefficient FIR digital filter design based upon an LMS criteria , 1983 .

[5]  I. Barrodale,et al.  An Improved Algorithm for Discrete $l_1 $ Linear Approximation , 1973 .

[6]  Jennifer Adams,et al.  FIR digital filters with least-squares stopbands subject to peak-gain constraints , 1991 .

[7]  Chun-Te Chen,et al.  Design of high-order digital differentiators using L/sub 1/ error criteria , 1995 .

[8]  W. Kellogg,et al.  Time domain design of nonrecursive least mean-square digital filters , 1972 .

[9]  L. Rabiner Linear program design of finite impulse response (FIR) digital filters , 1972 .

[10]  G. A. Watson An Algorithm for Linear L 1 Approximation of Continuous Functions , 1981 .

[11]  Boaz Porat,et al.  A course in digital signal processing , 1996 .

[12]  L. Rabiner,et al.  FIR digital filter design techniques using weighted Chebyshev approximation , 1975, Proceedings of the IEEE.

[13]  Andreas Antoniou,et al.  New improved method for the design of weighted- Chebyshev, nonrecursive, digital filters , 1983 .

[14]  O. Herrmann Design of nonrecursive digital filters with linear phase , 1970 .

[15]  Philip E. Gill,et al.  Practical optimization , 1981 .

[16]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[17]  L. Rabiner The design of finite impulse response digital filters using linear programming techniques , 1972 .

[18]  D. Tufts,et al.  Designing digital low-pass filters--Comparison of some methods and criteria , 1970 .

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  W. Steiger,et al.  Least Absolute Deviations: Theory, Applications and Algorithms , 1984 .

[21]  Emmanouil Z. Psarakis,et al.  A weighted L2-based method for the design of arbitrary one-dimensional FIR digital filters , 2006, Signal Process..

[22]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[23]  C. S. Burrus,et al.  Least p-power error design of FIR filters , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[24]  S. D. Roy,et al.  Design of maximally-flat FIR filters using the Bernstein polynomial , 1987 .

[25]  Todor Cooklev,et al.  Maximally flat FIR filters , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[26]  I. Barrodale,et al.  High-Resolution Signal and Noise Field Estimation Using the L 1 (Least Absolute Values) Norm , 1987 .

[27]  Nicholas J. Higham,et al.  Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomials , 1988 .

[28]  M. Powell,et al.  Approximation theory and methods , 1984 .

[29]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[30]  Karl H. Usow,et al.  On $L_1 $ Approximation I: Computation for Continuous Functions and Continuous Dependence , 1967 .

[31]  C. Sidney Burrus,et al.  Iterative reweighted least-squares design of FIR filters , 1994, IEEE Trans. Signal Process..

[32]  Markus Lang,et al.  Polynomial root finding , 1994, IEEE Signal Processing Letters.

[33]  Pao-Ta Yu,et al.  On the existence and design of the best stack filter based associative memory , 1992 .

[34]  Pencho Petrushev,et al.  The Gibbs phenomenon for bestL1-trigonometric polynomial approximation , 1995 .

[35]  Truong Q. Nguyen,et al.  Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters , 1987 .

[36]  L. Goddard Approximation of Functions , 1965, Nature.

[37]  J. McClellan,et al.  A unified approach to the design of optimum FIR linear-phase digital filters , 1973 .

[38]  H. Helms Digital filters with equiripple or minimax responses , 1971 .

[39]  G.V. Moustakides,et al.  A robust initialization scheme for the Remez exchange algorithm , 2003, IEEE Signal Processing Letters.

[40]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[41]  P. P. Vaidyanathan,et al.  Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks , 1985 .

[42]  H. Helms,et al.  Nonrecursive digital filters: Design methods for achieving specifications on frequency response , 1968 .

[43]  Karl H. Usow,et al.  On L_1 Approximation II: Computation for Discrete Functions and Discretization Effects , 1967 .