DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY

Using the IRAM Plateau de Bure Interferometer, we report the detection of the 158 μm [C ii] emission line and underlying dust continuum in the host galaxy of the quasar ULAS J112001.48+064124.3 (hereafter J1120+0641) at z = 7.0842 ± 0.0004. This is the highest redshift detection of the [C ii] line to date, and allows us to put the first constraints on the physical properties of the host galaxy of J1120+0641. The [C ii] line luminosity is 1.2  ±  0.2 × 109 L☉, which is a factor ∼4 lower than observed in a luminous quasar at z = 6.42 (SDSS J1148+5251). The underlying far-infrared (FIR) continuum has a flux density of 0.61 ± 0.16 mJy, similar to the average flux density of z ∼ 6 quasars that were not individually detected in the rest-frame FIR. Assuming that the FIR luminosity of LFIR = 5.8 × 1011–1.8 × 1012 L☉ is mainly powered by star formation, we derive a star formation rate in the range 160–440 M☉ yr−1 and a total dust mass in the host galaxy of 6.7 × 107–5.7 × 108 M☉ (both numbers have significant uncertainties given the unknown nature of dust at these redshifts). The [C ii] line width of σV = 100 ± 15 km s−1 is among the smallest observed when compared to the molecular line widths detected in z ∼ 6 quasars. Both the [C ii] and dust continuum emission are spatially unresolved at the current angular resolution of 2.0 × 1.7 arcsec2 (corresponding to 10 × 9 kpc2 at the redshift of J1120+0641).

[1]  A. Graham BREAKING THE LAW: THE Mbh–Mspheroid RELATIONS FOR CORE-SÉRSIC AND SÉRSIC GALAXIES , 2012, 1202.1878.

[2]  D. Elbaz,et al.  GOODS-HERSCHEL: GAS-TO-DUST MASS RATIOS AND CO-TO-H2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH-z , 2011, 1109.1140.

[3]  D. H. Hughes,et al.  GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS , 2011, 1107.2924.

[4]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[5]  Xiaohui Fan,et al.  CO (2–1) LINE EMISSION IN REDSHIFT 6 QUASAR HOST GALAXIES , 2011, 1105.4199.

[6]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[7]  F. Walter,et al.  [CII] line emission in BRI 1335-0417 at z = 4.4 , 2010, 1008.1578.

[8]  K. Coppin,et al.  Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3 , 2010, 1005.1071.

[9]  C. De Breuck,et al.  Strong (CII) emission at high redshift , 2009, 0904.3793.

[10]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[11]  Xiaohui Fan,et al.  Thermal Emission from Warm Dust in the Most Distant Quasars , 2008, 0806.3022.

[12]  L. Ho The CO Tully-Fisher Relation and Implications for the Host Galaxies of High-Redshift Quasars , 2007, 0707.3436.

[13]  Paul S. Smith,et al.  Aromatic Features in AGNs: Star-forming Infrared Luminosity Function of AGN Host Galaxies , 2007, 0707.2806.

[14]  F. Walter,et al.  CO(J = 1→0) IN z > 2 QUASAR HOST GALAXIES: NO EVIDENCE FOR EXTENDED MOLECULAR GAS RESERVOIRS , 2006, 1106.2553.

[15]  S. Veilleux,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). I. The Origin of the Far-Infrared Continuum of QSOs , 2006, astro-ph/0606158.

[16]  C. Carilli,et al.  350 μm Dust Emission from High-Redshift Quasars , 2006, astro-ph/0603121.

[17]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[18]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[19]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[20]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[21]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[22]  Cambridge,et al.  The far-infrared-submillimetre spectral energy distribution of high-redshift quasars -- , 2001, astro-ph/0102116.

[23]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[24]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[25]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[26]  R. McMahon,et al.  Observations of high-redshift objects at submillimetre wavelengths , 1994 .

[27]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[28]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[29]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .