Recolorable Posterization of Volumetric Radiance Fields Using Visibility‐Weighted Palette Extraction

Volumetric radiance fields have recently gained significant attention as promising representations of photorealistic scene reconstruction. However, the non‐photorealistic rendering of such a representation has barely been explored. In this study, we investigate the artistic posterization of the volumetric radiance fields. We extend the recent palette‐based image‐editing framework, which naturally introduces intuitive color manipulation of the posterized results, into the radiance field. Our major challenge is applying stylization effects coherently across different views. Based on the observation that computing a palette frame‐by‐frame can produce flickering, we propose pre‐computing a single palette from the volumetric radiance field covering its entire visible color. We present a method based on volumetric visibility to sample visible colors from the radiance field while avoiding occluded and noisy regions. We demonstrate our workflow by applying it to pre‐trained volumetric radiance fields with various stylization effects. We also show that our approach can produce more coherent and robust stylization effects than baseline methods that compute a palette on each rendered view.

[1]  Hung-Yu Tseng,et al.  Stylizing 3D Scene via Implicit Representation and HyperNetwork , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[2]  Marios Papas,et al.  NeRF‐Tex: Neural Reflectance Field Textures , 2022, EGSR.

[3]  Suzi Kim,et al.  Dynamic closest color warping to sort and compare palettes , 2021, ACM Trans. Graph..

[4]  Yotam I. Gingold,et al.  Video recoloring via spatial-temporal geometric palettes , 2021, ACM Trans. Graph..

[5]  Yotam I. Gingold,et al.  Video recoloring via spatial-temporal geometric palettes , 2021, ACM Trans. Graph..

[6]  Jonathan T. Barron,et al.  HyperNeRF , 2021, ACM Trans. Graph..

[7]  Paul Debevec,et al.  NeRFactor , 2021, ACM Trans. Graph..

[8]  Yiyi Liao,et al.  KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Ren Ng,et al.  PlenOctrees for Real-time Rendering of Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Stephan J. Garbin,et al.  FastNeRF: High-Fidelity Neural Rendering at 200FPS , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Yannick Hold-Geoffroy,et al.  NeuTex: Neural Texture Mapping for Volumetric Neural Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Frank Dellaert,et al.  Neural Volume Rendering: NeRF And Beyond , 2020, ArXiv.

[13]  Jonathan T. Barron,et al.  NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Jiajun Wu,et al.  pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Jonathan T. Barron,et al.  Nerfies: Deformable Neural Radiance Fields , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Kyaw Zaw Lin,et al.  Neural Sparse Voxel Fields , 2020, NeurIPS.

[17]  Sunghee Choi,et al.  Automatic Color Scheme Extraction from Movies , 2020, ICMR.

[18]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[19]  Kun Xu,et al.  An Improved Geometric Approach for Palette‐based Image Decomposition and Recoloring , 2019, Comput. Graph. Forum.

[20]  Justus Thies,et al.  Deferred Neural Rendering: Image Synthesis using Neural Textures , 2019 .

[21]  Justus Thies,et al.  Deferred neural rendering , 2019, ACM Trans. Graph..

[22]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Yotam I. Gingold,et al.  Efficient palette-based decomposition and recoloring of images via RGBXY-space geometry , 2018, ACM Trans. Graph..

[24]  Sidonie Christophe,et al.  Constrained palette-space exploration , 2017, ACM Trans. Graph..

[25]  Markus H. Gross,et al.  Practical Path Guiding for Efficient Light‐Transport Simulation , 2017, Comput. Graph. Forum.

[26]  Chunxia Xiao,et al.  Palette-Based Image Recoloring Using Color Decomposition Optimization , 2017, IEEE Transactions on Image Processing.

[27]  M. Pollefeys,et al.  Unmixing-Based Soft Color Segmentation for Image Manipulation , 2017 .

[28]  Yotam I. Gingold,et al.  Decomposing images into layers via RGB-space geometry , 2017, TOGS.

[29]  Stephen DiVerdi,et al.  Palette-based photo recoloring , 2015, ACM Trans. Graph..

[30]  Jie Xu,et al.  Artistic thresholding , 2008, NPAR.

[31]  B. Gooch,et al.  Real-time video abstraction , 2006, ACM Trans. Graph..

[32]  Lucas J. van Vliet,et al.  Separable bilateral filtering for fast video preprocessing , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[33]  S. Rusinkiewicz,et al.  Line drawings from volume data , 2005, ACM Transactions on Graphics.

[34]  Adam Finkelstein,et al.  Suggestive contours for conveying shape , 2003, ACM Trans. Graph..

[35]  David S. Ebert,et al.  Non-photorealistic volume rendering using stippling techniques , 2002, IEEE Visualization, 2002. VIS 2002..

[36]  Douglas DeCarlo,et al.  Stylization and abstraction of photographs , 2002, ACM Trans. Graph..

[37]  Eduard Gröller,et al.  Fast Visualization of Object Contours by Non‐Photorealistic Volume Rendering , 2001, Comput. Graph. Forum.

[38]  Mark J. Harris,et al.  Stylized rendering techniques for scalable real-time 3D animation , 2000, NPAR '00.

[39]  Elaine Cohen,et al.  A non-photorealistic lighting model for automatic technical illustration , 1998, SIGGRAPH.

[40]  Barbara J. Meier Painterly rendering for animation , 1996, SIGGRAPH.

[41]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[43]  Takafumi Saito,et al.  Real-time previewing for volume visualization , 1994, VVS '94.

[44]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.