Computing moments of objects enclosed by piecewise polynomial surfaces

Combining a polynomial free-form surface representation with Gauss' divergence theorem allows efficient and exact calculation of the moments of the enclosed objects. For example, for an cubic representation, volume, center of mass, and the inertia tensor can be computed in seconds even for complex objects with serval thousand patches while change due to local modification of the surface geometry can be computed in real-time as feedback for animation or design. Speed and simplicity of the approach allow solving the inverse problem of modeling to match prescribed moments.

[1]  Hans-Peter Seidel,et al.  An implementation of triangular B-spline surfaces over arbitrary triangulations , 1993, Comput. Aided Geom. Des..

[2]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches , 1987, Comput. Aided Geom. Des..

[3]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[4]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[5]  Jörg Peters,et al.  Algorithm 783: Pcp2Nurb—smooth free-form surfacing with linearly trimmed bicubic B-splines , 1998, TOMS.

[6]  A. M. Messner,et al.  Algorithm 550: Solid Polyhedron Measures [Z] , 1980, TOMS.

[7]  J. G. Tough,et al.  A method for the computation of inertial properties for general areas , 1983 .

[8]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[9]  Fritz Albregtsen,et al.  Fast Computation of Three-Dimensional Geometric Moments Using a Discrete Divergence Theorem and a Generalization to Higher Dimensions , 1997, CVGIP Graph. Model. Image Process..

[10]  Carlo Cattani,et al.  Boundary integration over linear polyhedra , 1990, Comput. Aided Des..

[11]  Jörg Peters,et al.  Computing Volumes of Solids Enclosed by Recursive Subdivision Surfaces , 1997, Comput. Graph. Forum.

[12]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[13]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[14]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[15]  Mark de Berg Trends and Developments in Computational Geometry , 1997, Comput. Graph. Forum.

[16]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[17]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[18]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches: errata and improvements , 1991, Comput. Aided Geom. Des..

[19]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[20]  W. Rudin Real and complex analysis , 1968 .

[21]  James T. Kajiya,et al.  A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra , 1984, IEEE Computer Graphics and Applications.

[22]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[23]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[24]  J. Peters,et al.  C 1 -surface splines , 1995 .

[25]  Matthew M. Zuckerman Innovative Display Technologies-Why a Flat Panel When You can Have a CRT? , 1984, IEEE Computer Graphics and Applications.

[26]  Aristides A. G. Requicha,et al.  Algorithms for computing the volume and other integral properties of solids. II. A family of algorithms based on representation conversion and cellular approximation , 1982, CACM.

[27]  H. Timmer,et al.  Computation of global geometric properties of solid objects , 1980 .

[28]  Leif Kobbelt,et al.  Robust and efficient evaluation of functionals on parametric surfaces , 1997, SCG '97.